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Regime shift in secondary inorganic aerosol 
formation and nitrogen deposition in the 
rural United States

Da Pan    1,2  , Denise L. Mauzerall    1,3, Rui Wang    1, Xuehui Guo    1,9, 
Melissa Puchalski4, Yixin Guo    3,10, Shaojie Song    5, Daniel Tong    6, 
Amy P. Sullivan    2, Bret A. Schichtel    7,8, Jeffrey L. Collett Jr2 & 
Mark A. Zondlo    1 

Secondary inorganic aerosols play an important role in air pollution 
and climate change, and their formation modulates the atmospheric 
deposition of reactive nitrogen (including oxidized and reduced nitrogen), 
thus impacting the nitrogen cycle. Large-scale and long-term analyses of 
secondary inorganic aerosol formation based on model simulations have 
substantial uncertainties. Here we improve constraints on secondary 
inorganic aerosol formation using decade-long in situ observations of 
aerosol composition and gaseous precursors from multiple monitoring 
networks across the United States. We reveal a shift in the secondary 
inorganic aerosol formation regime in the rural United States between 
2011 and 2020, making rural areas less sensitive to changes in ammonia 
concentrations and shortening the effective atmospheric lifetime of reduced 
forms of reactive nitrogen. This leads to potential increases in reactive 
nitrogen deposition near ammonia emission hotspots, with ecosystem 
impacts warranting further investigation. Ammonia (NH3), a critical but 
not directly regulated precursor of fine particulate matter in the United 
States, has been increasingly scrutinized to improve air quality. Our findings, 
however, show that controlling NH3 became significantly less effective for 
mitigating fine particulate matter in the rural United States. We highlight 
the need for more collocated aerosol and precursor observations for better 
characterization of secondary inorganic aerosols formation in urban areas.

Secondary inorganic aerosols (SIAs) are major components of fine  
particulate matter (PM2.5), which has detrimental impacts on human 
health and regional visibility and substantially influences the radiative 
balance of the climate system1–4. SIAs are formed predominantly through 
the oxidation of sulfur dioxide (SO2) and nitrogen oxides (NOx), and  
subsequent reaction with ammonia (NH3)5. These processes determine 
the physical and chemical properties of aerosols, including aerosol acid-
ity, aerosol water uptake and growth, and potentially aerosol toxicity.  

SIA formation also influences the gas–particle partitioning of semivola-
tile inorganic reactive nitrogen (Nr) species, such as NH3, ammonium 
(NH4

+), nitric acid (HNO3) and nitrate (NO3
−)5. Because gaseous NH3 and 

HNO3 species deposit much more quickly than Nr compounds in PM2.5 
(refs. 6,7), their phase partitioning modulates the spatial distribution of 
Nr atmospheric deposition, which influences human exposure to PM2.5 
(and the associated health impacts), loss of biological diversity, soil and 
water acidification, and surface water eutrophication8–11. Therefore, a 
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tration, in units of μg per m3 of air) from −28 to 11% to −6 to 8% 
(Supplementary Table 3). The NMBs between CTM simulations and 
observations are much larger (−65 to 126%) because the built-in aerosol 
thermodynamic model is driven by inputs determined by emission, 
oxidation, transport and deposition processes13–20. Although simulat-
ing these processes links the concentrations of SIA precursors (for 
example, SO4

2−, total nitrate (NO3
T = HNO3 + NO3

−) and total ammonium 
(NH4

T = NH3 + NH4
+)) to primary emissions, the large errors in CTMs 

could alter the SIA formation regime, and observations are needed to 
constrain these processes. Here, we first investigate regional precursor 
concentration responses to emission reductions by examining the 
relationship between precursor concentrations and their emissions. 
Then, with the improved constraints on SIA formation, we can better 
quantify the impacts of rapidly changing atmospheric composition 
on Nr deposition, SIA properties and SIA sensitivities to precursor 
reductions.

Rapid changes in aerosol composition and acidity
Between 2011 and 2020, all regions in the United States experienced 
significant decreases in cSO2−

4
 and cNOT

3
 (Fig. 1e,f), whereas cNHT

4
 remained 

relatively stable in the Western and Midwestern United States but 
decreased in the Central, Northeastern and Southeastern United States 
(Fig. 1g and Supplementary Table 4). Concentrations of organic aero-
sols (OAs) also remained relatively stable during this period, except in 
the Western United States (Supplementary Fig. 2). Their relative con-
tributions to PM2.5 concentrations increased significantly because of 
the reductions in cSIA (Supplementary Fig. 2). Annual concentrations 
of SIAs were still higher than OAs at the locations investigated in the 
Midwestern, Northeastern and Southeastern United States in 2020.

As a consequence of regulations, shifts in energy generation, and 
implementations of emission control technology, eSO2  and eNOx

 
(Fig. 1b,c; e denotes emission in units of Gg) decreased, respectively, 
by 70% and 50% in the United States between 2011 and 202028. The 
decreases in cSO2−

4
 and cNOT

3
 correlate with these emission reductions 

(Fig. 1h,i), indicating that eSO2 and eNOx
 reductions have been very effec-

tive in reducing cSO2−
4

 and cNOT
3

. The responses of cSO2−
4

 and cNOT
3

 to eSO2 
and eNOx

 reductions remained largely unchanged between 2000  
and 202129, and this period witnessed 90% and 65% reductions in eSO2 
and eNOx

, respectively28. However, the responses could change if SO2 
and NOx emission reductions continue (Supplementary Text 1). In 
contrast, eNH3 has not been directly regulated and remained approxi-
mately unchanged. cNHT

4
 and eNH3 are inversely correlated in the South-

eastern United States and show no clear correlation in other regions 
(Extended Data Fig. 3). Regional Kendall tests show that these trends 
remain consistent with or without the sites established after 2015 (Sup-
plementary Fig. 3 and Supplementary Table 4)30. More trend analyses 
and regression results are presented in Supplementary Figs. 4–6 and  
Supplementary Text 1. The inverse correlations and less clear 
cNHT

4
− eNH3 relationship reflect large uncertainties in NH3 emissions 

and/or increased NH4
T removal associated with cNOT

3
 and cSO2−

4
 reduc-

tions instead of changes in eNH3.
Influencing aerosol thermodynamic properties, aerosol acidity is 

a key indicator of potential changes in gas–particle partitioning and 
SIA formation caused by changes in aerosol composition31. Aerosol pH 
is difficult to measure directly, and is often estimated using aerosol 
thermodynamic simulations because of the challenges associated with 
collecting unperturbed samples31. Between 2011 and 2020, our simula-
tions show that the annual mean aerosol pH increased by 0.2–0.6 units 
across the rural United States (Fig. 2a–e). The major contributor to  
the pH increase was a reduction in cSO2−

4
 (Extended Data Fig. 4) in all 

regions, and decreases in cNHT
4

 ameliorated the extent of the pH 
increases in the Midwestern, Northeastern and Southeastern United 
States. Aerosol pH was primarily buffered by NH3 in the Western, Central 
and Midwestern United States (Extended Data Fig. 5). Zheng and  
colleagues32 have shown that this buffering regime suppresses the  

better understanding of SIA formation can facilitate policy-making in 
relation to many environmental challenges.

Aerosol thermodynamic analyses using measured gas concen-
trations and particle composition provide better constraints on SIA 
formation and the partitioning of semivolatile species than simulations 
with chemical transport models (CTMs)12. Compared to observations, 
regional and global CTM simulations vary substantially in terms of 
the simulated aerosol composition and phase partitioning of Nr spe-
cies in the United States13–16 (Extended Data Table 1). This variability 
could result from uncertainties in emission inventories, transport, 
dry deposition, wet scavenging and/or heterogeneous chemical pro-
duction13,14,17–20. Directly modelling SIA formation with simultaneous 
measurements of gas concentrations and aerosol composition (that 
is, concentrations of NH3, HNO3, NH4

+, NO3
−, SO4

2−, non-volatile cations 
(NVCs, including sodium, calcium, magnesium and potassium ions) 
and chloride ion (Cl−)) avoids the aforementioned uncertainties12,21. 
However, this is only available at a few sites or from a few intensive 
field campaigns with limited spatiotemporal coverage in the United 
States12,22,23. Moreover, past measurements are unlikely to reflect the 
current atmospheric composition due to rapid changes in the emis-
sions of various precursors, impacts on gas–particle partitioning from 
climate change, and increases in the size and number of wildfires.

In this Article we overcome the above limitations of existing 
datasets and a lack of constraint on simulated SIA formation by using 
observations from multiple long-term air-quality-monitoring networks 
for aerosol thermodynamic analyses. Our results show that chemi-
cal regimes of SIA formation in the rural United States shifted from 
NH3-sensitive to NH3-insensitive between 2011 and 2020 and led to 
increases in Nr deposition near NH3-emission hotspots. Although we 
focus on the rural United States because of the available observations, 
we demonstrate the benefits of collocated monitoring for aerosol com-
position and precursor concentrations, which should be considered 
for future monitoring network design in the United States and globally.

Improving constraints on SIA formation
We identified locations where sites from the monitoring networks 
provide essential inputs to SIA formation simulations and are located 
within a spatial window of 50 km (Methods). Several national networks 
monitor trace-gas precursors and aerosol chemical composition, but 
observations from an individual network are insufficient for thermo-
dynamic modelling. Integrating collocated observations provides the 
inputs needed as biweekly means (averaged every 2 weeks). There were 
42 and 68 locations that had collocated observations for the periods of 
2011–2015 and 2016–2020, respectively (Extended Data Fig. 1 and Sup-
plementary Tables 1 and 2). Although these areas are located outside 
urban centres, many of them are still in the vicinity of high-population 
areas, especially in the Midwestern and Northeastern United States. The 
areas within 50 km of the locations account for 6.7% of the land surface 
areas, but 9.8%, 7.0%, 8.7% and 7.5% of the population, SO2 emissions, 
NOx emissions and NH3 emissions in the contiguous United States, 
respectively24,25. Moreover, because the aerosol composition and pre-
cursors observed at sites 50–100 km apart still show good agreement 
(Supplementary Fig. 1), our findings may apply to rural and suburban 
regions outside major urban centres more generally.

Using the ISORROPIA-II model26 (a full thermodynamic model for 
inorganic aerosol formation) with the integrated dataset described 
above, we substaintially reduce uncertainties in simulating SIA forma-
tion (Extended Data Fig. 2). Although ISORROPIA-II and other aerosol 
thermodynamic models have been validated with hourly or daily obser-
vations12,27, they have not been validated with biweekly observations 
made with different sampling methods. We conducted sensitivity tests 
and uncertainty analyses to develop the necessary preprocessing steps 
to integrate collocated observations (Methods and Supplementary 
Table 3), reducing the normalized mean biases (NMBs) between simu-
lated and observed cNH3, cNH+

4
, cHNO3 and cNO−

3
 (where c denotes concen-
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influence of compositional differences on aerosol pH and makes  
aerosol water content (AWC) and temperature (T) the primary deter-
minants of aerosol pH, leading to larger seasonal variations in aerosol 
pH in those three regions. The changes in aerosol acidity and its  
seasonal variations could have implications for aerosol toxicity and 
the oxidation rates of SO2 and NOx, which requires further investigation. 
For example, the effectiveness of controlling SO2 emissions on reducing 
cSO2−

4
 could decrease due to enhanced SO2 oxidation as aerosol pH 

increases17,31,33.

Regime changes in SIA formation and Nr 
deposition
Increases in aerosol pH led to decreases of −2 to −4% per year in the 
molar fraction of NH4

+ in NH4
T (εNH+

4
) in all regions (Fig. 2f–j provides a 

time series and Supplementary Table 4 shows the trends), implying 
that more NH4

T remained as NH3 in the atmosphere in 2020 than in 
2011. Thus, a greater fraction of NH4

T could deposit near emission 
sources as NH3, because gas-phase NH3 deposits more rapidly than 
PM2.5 (ref. 7). The decrease in the atmospheric lifetime of NH4

T could 
reduce the NH4

T transported from NH3 sources in the Western, Central 
and Midwestern United States to the Northeastern and Southeastern 
United States, explaining the decreasing trends of cNHT

4
 in the  

Northeastern and Southeastern United States without significant  
eNH3 changes.

By dividing the contiguous United States into four zones according 
to their distances to the nearest NH3-emission hotspot (<50 km, 
50–150 km, 150–300 km and >300 km), we analysed the trend of annual 
Nr total deposition from the ‘Total Deposition Estimates Using the 
Measurement Model Fusion’ (TDep MMF)34 model between 2010 and 
2019 (Fig. 3a and Supplementary Text 2). Nr total deposition showed 
statistically significant increasing trends in areas within 150 km of an 
NH3-emission hotspot (Fig. 3b) and insignificant trends at >150 km 

from these hotspots, despite reductions in NO3
T deposition (Fig. 3c). 

NH4
T deposition increased more quickly than NH3 emissions in the 

corresponding zones (Fig. 3d). These results are indicative of increased 
NH4

T near the source and probably the results of decreased εNH+
4  and 

higher dry deposition rates of NH3 relative to NH4
+. There are large 

discrepancies between the hotspots defined by NH3 emissions and 
those identified by satellite observations35–37 (Extended Data Fig. 6 and 
Supplementary Figs. 7 and 8), highlighting the need for more NH3 
observations.

As the aerosol composition changed and NH4
T partitioned less 

into aerosols, the SIA formation regime became less sensitive to cNHT
4 

in the rural United States (Fig. 2k–o). Although NH4NO3-containing SIA 
always responds to cNHT

4
 changes to some degree, a boundary is needed 

to distinguish NH3-sensitive and NH3-insensitive regimes to facilitate 
decision-making for air-quality and nitrogen-deposition purposes. 
Here, we define the boundary using both comparative and aerosol 
property-based approaches. In the comparative approach, we simulate 
cSIA changes (ΔcSIA) caused by 10%, 40% and 70% reductions in each 
precursor (Δcp, p = NH4

T, NO3
T or SO4

2−). Instead of comparing ΔcSIA, 
which scales with Δcp  (Supplementary Figs. 9–11), we compare 
ΔcSIA/Δcp, which reflects chemical and meteorological conditions more 
appropriately (Supplementary Text 3). A regime is considered 
NH3-insensitive if ΔcSIA/ΔcNHT

4
 is smaller than ΔcSIA/ΔcNOT

3
 and 

ΔcSIA/ΔcSO2−
4

. Figure 2k–o shows ΔcSIA/Δcp with 40% reduction in each 
precursor, and Extended Data Fig. 7 shows ΔcSIA/Δcp with 10% and 70% 
reductions. With a 40% reduction, annual ΔcSIA/ΔcNHT

4
 decreased  

by 2–5% per year in all regions between 2011 and 2020 (Supplementary 
Table 4). As a result, by 2020, SIA formation became NH3-insensitive in 
all regions except the Northeastern United States using the compara-
tive approach. Seasonally, SIA formation was still NH3-sensitive in 2020 
in the winter in the Midwestern, Northeastern and Southeastern United 
States (Extended Data Fig. 7). We found a similar regime shift trend 
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Fig. 1 | Site locations and relationships between emissions of SO2, NOx and NH3 
and concentrations of SO4

2−, NO3
T and NH4

T. a, Site map. Black and red crosses 
represent measurement sites established before and after 2015, respectively, in 
the five regions indicated by specific colours. Corresponding site numbers are 
listed in the legends. The base map was obtained from Natural Earth. The five 
regions are defined according to the Regional Planning Organizations (Methods). 
The numbers of samples for these regions for each year are listed in 

Supplementary Table 2. b–d, Annual SO2 (b), NOx (c) and NH3 (d) emissions (eSO2, 
eNOx  and eNH3) in the five regions. e–g, Annual mean concentrations of SO4

2− (e), 
NO3

T (f) and NH4
T (g). h–j, Orthogonal distance regressions of annual mean eSO2 

and cSO2−
4

 (h), eNOx  and cNOT
3

 (i) and eNH3 and cNHT4
 (j), with each dot indicating one 

year from 2011 to 2020. The vertical bars show the 25th and 75th percentiles of 
annual mean concentrations observed at locations within a region.
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using the aerosol property-based approach developed by Nenes and 
colleagues38 (Supplementary Text 3 and Extended Data Fig. 8)38.  
The rapid decrease in ΔcSIA/ΔcNHT

4
 highlights the importance of the  

SIA formation regime change between 2011 and 2020 and indicates 
that NH3 controls will be less effective for PM2.5 reduction in 2020 than 
in 2011.

Air quality and Nr deposition implications
Past studies have identified NH3 controls as potentially effective PM2.5 
mitigation measures in the United States, because emissions have not 
been directly controlled and the marginal cost for low-level reduc-
tions from agricultural sources is relatively low39,40. Gu and colleagues39 
argued that the US abatement cost of NH3 emissions is one-tenth the 
cost of NOx controls, while bringing similar welfare benefits in prevent-
ing mortality by reducing PM2.5 levels39. More broadly, of 17 studies 
(from 2007 to 2021) that compared the effectiveness of SO2, NOx and 
NH3 emission controls in the United States, eight found that control-
ling NH3 emissions is the most effective way to reduce PM2.5 concen-
trations39–41 (Supplementary Table 5 provides a full list of the studies 
reviewed). Because of these studies and legal action by environmental 
organizations, in 2016 the US Environmental Protection Agency (EPA) 
asked state and regional air-quality regulators to evaluate potential 
control measures for NH3 when designing State Implementation Plans 
(SIPs) for PM2.5 National Ambient Air Quality Standards (NAAQS)42. 
Despite the updated requirements, most relevant regulatory agen-
cies found additional NH3-emission controls unnecessary, and only 
one PM2.5 NAAQS nonattainment area (Imperial County, California) 
included a new rule to control NH3 emissions43. For the Regional Haze 
Rule, which aims to restore visibility in national parks and wilderness 
areas in the United States, the US EPA recommends that states ignore 
NH3 in their SIPs44.

Our results show that the United States has missed an opportunity 
to more efficiently improve air quality in rural regions by controlling 
NH3 emissions, especially from agricultural sources, as SIA formation 
transitioned from more NH4

T-sensitive to less NH4
T-sensitive between 

2011 and 2020. In the early 2010s, reducing cNHT
4

 could bring signifi-
cant reductions in cSIA in all regions except the Western United  
States. In 2020, however, deep cNHT

4
 (40–70%) reductions would be 

needed to achieve reductions in annual cSIA similar to those resulting 
from 10–40% reductions in cSO2−

4
 and cNOT

3
 in all regions except the 

Northeastern United States. Reducing cNHT
4
 in winter, when cSIA loadings 

are high, was still an effective complementary measure to SO2- and 
NOx-emission controls for PM2.5 reductions in 2020 in the rural Mid-
western, Northeastern and Southeastern United States (Extended Data 
Fig. 7 and 8). However, wintertime NH3 emissions were low in these 
regions, especially from agricultural sources (Supplementary Table 6), 
and NH3-emission reductions from vehicular and industrial sources 
might be needed to achieve the required reductions. Recent studies 
have shown that NH3 emissions from mobile and industrial sources are 
significantly underestimated45. Finally, the shift towards an 
NH4

T-insensitive regime and the lack of incentive for NH3 controls for 
air-quality purposes in the rural United States (for example, the 
Regional Haze Rule) are likely to continue in rural areas as climate  
policies increase renewable power generation and electrify transporta-
tion. SO2 and NOx emissions from fuel combustion are expected to 
decrease further46.

More importantly, our analyses also show that the inorganic Nr 
deposition regime shifted due to SO2- and NOx-emission reductions. 
As NOx emissions decreased, reduced-form Nr deposition became the 
dominant component of Nr deposition and a major concern in many 
sensitive ecosystems47. Our results further illustrate that deposition 
patterns could change as more gaseous NH3 deposits near sources 
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Fig. 2 | Regional means of aerosol pH, gas–particle partitioning and cSIA 
sensitivities to precursor reductions (ΔcSIA/Δcp) from 2011 to 2020. The 
numbers of samples used to calculate the mean values for each region are listed 
in Supplementary Table 2. a–e, Simulated aerosol pH (black lines) in the Western 
(a), Central (b), Midwestern (c), Northeastern (d) and Southeastern (e) United 
States over time. f–j, Observed molar fractions ε of NO3

T (cyan) and NH4
T (brown) 

that partition into the particle phase (εNO−3  and εNH+4
) in the Western (f), Central 

(g), Midwestern (h), Northeastern (i) and Southeastern (j) United States  
over time. k–o, ΔcSIA/ΔcSO2−

4
 (blue), ΔcSIA/ΔcNOT

3
 (green) and ΔcSIA/ΔcNHT4

 
(orange), simulated by reducing the corresponding precursors by 40% in the 
Western (k), Central (l), Midwestern (m), Northeastern (n) and Southeastern (o) 
United States over time. Vertical bars show the 25th and 75th percentiles of the 
corresponding values observed or simulated at locations within a region to 
illustrate regional variability.
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rather than being converted into SIAs and being transported away, 
shortening the effective atmospheric lifetime of reduced forms of Nr. 
On the one hand, NH3 mitigation will be needed to protect sensitive 
ecosystems and reduce coastal eutrophication caused by increased Nr 
deposition near hotspots. Pan and colleagues found that 26 national 
parks in the United States are within 200 km of an NH3 hotspot (iden-
tified by satellite observations)35. On the other hand, increased Nr 
deposition, together with CO2 fertilization, has enhanced terres-
trial carbon uptake, and it is unclear how the terrestrial ecosystems 
will respond to Nr deposition pattern and composition changes48. 
More flux and ecological observations are needed to investigate the  
multifaceted impacts of increasingly inhomogeneous Nr deposition.

Our method can be applied to routine monitoring for faster envi-
ronmental policy evaluation and provides a rationale for new inte-
grated monitoring networks in urban areas and regions impacted by 
enhanced wildfire and dust emissions. The integrated data and ther-
modynamic analysis with uncertainty estimates can also be used to 
improve CTMs. Our conclusions are limited to the rural United States, 
and urban conditions might be different. However, the approach dem-
onstrated in this work can be used to characterize the SIA response to 
precursor reductions in urban regions in the United States if simultane-
ous observations of gaseous NH3 and HNO3, aerosol composition and 

meteorological conditions become available. As wildfires increase and 
US EPA lowers the current NAAQS for PM2.5 to 9 µg m−3 (ref. 49), the 
impacts on SIA formation of NVCs from dust and organic compounds 
from wildfires will probably become important for air-quality manage-
ment in rural regions and warrants further investigation. For example, 
OAs are not considered in the inorganic aerosol model used in this 
study. Although organic acids could influence SIA formation, we do 
not find significant impacts of OAs on model performance, except for 
wildfire episodes with extremely high cOA (Extended Data Fig. 9). During 
those events, the model underestimates both εNH+

4
 and εNO−

3
, which 

needs more examination with speciated OA observations. Finally,  
the benefits of collocated monitoring for aerosol composition and 
precursor concentrations demonstrated here should be considered 
in countries developing their own aerosol-monitoring networks.

Online content
Any methods, additional references, Nature Portfolio reporting  
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author  
contributions and competing interests; and statements of data 
and code availability are available at https://doi.org/10.1038/
s41561-024-01455-9.
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Fig. 3 | Spatial distribution and trends of total reactive nitrogen and NH4
T 

deposition. a, The average annual total reactive nitrogen (Nr) deposition (dep) 
in the United States between 2010 and 2019. Solid, dashed and dotted lines show 
the boundaries of the areas within 50 km, 150 km and 300 km of an NH3-emission 
hotspot (Supplementary Text 2). The base map was obtained from Natural Earth. 
b–d, The 2010–2019 trends of annual total Nr deposition (b), NO3

T deposition (c) 
and NH4

T deposition normalized by NH3 emission (emis) (d) trends relative to the 

2010 level (emis2010). The trends and relative annual change rates are determined 
using the Mann–Kendall test and Theil–Sen regression with a sample size of 
10 (ref. 50). Numbers in the brackets are the 95% confidence intervals of the 
regressions (mean ± 1.96 s.d.). ‘↑’, ‘↓’ and ‘~’ indicate increasing trend, decreasing 
trend and no trend, respectively. *Statistically significant trend with P < 0.05 
based on the Mann–Kendall test.
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Methods
Integration of the monitoring networks of gaseous  
precursors, aerosol composition and meteorological  
conditions
Several national aerosol-monitoring networks have been created in 
the United States since the signing of the 1990 US Clean Air Act Amend-
ments and the 1999 Regional Haze Rule. Those providing various suites 
of trace-gas precursors and chemical compositions of PMs are the Clean 
Air Status and Trends Network (CASTNET), the Interagency Monitoring 
of Protected Visual Environments (IMPROVE) network, US EPA’s PM2.5 
Chemical Speciation Monitoring Network (CSN) and the Ammonia 
Monitoring Network (AMoN). Extended Data Fig. 1 shows the spatial 
distributions of their monitoring sites in 2000, 2010 and 2020. A sum-
mary of the networks is provided in the following.

CASTNET is the only network that consistently reports weekly 
mean concentrations of gaseous HNO3 and SO2 in the United States in 
addition to aerosol composition (concentrations of SO4

2−, NO3
−, NH4

+, 
Cl−, Na+, Ca2+, Mg2+ and K+)51,52. IMPROVE uses four separate modules to 
collect samples for speciated PM2.5, gravimetric PM2.5 and PM10 meas-
urements53. Samples are collected for 24 h every third day. Concentra-
tions of anions (cSO2−

4
, cNO−

3
 and cCl−) are measured using ion 

chromatography (IC), and cNH+
4
 is reconstructed by assuming all elemen-

tal sulfur (S) and nitrogen (N) are in the forms of (NH4)2SO4 and NH4NO3 
(ref. 54). This assumption could be violated when cNVC is high or the 
aerosol is extremely acidic. Therefore, the reconstructed cNH+

4
 has a 

larger uncertainty than that of CASTNET. IMPROVE also measures 
concentrations of trace elements, including Na, Ca, Mg and K, using 
energy-dispersive X-ray fluorescence (EDXRF)55. EPA CSN uses similar 
sampling and analysis methods as those of IMPROVE. However, unlike 
IMPROVE, EPA CSN analyses NH4

+ and Na+ directly using IC, which is the 
major difference between IMPROVE and EPA CSN55. AMoN is the only 
network providing a consistent and long-term record of gaseous NH3 
across the United States. At AMoN sites, NH3 concentrations in the air 
are measured by Radiello passive diffusion samplers with phosphorous 
acid and are reported biweekly56.

The potential biases and observation precisions of the networks 
are summarized in Supplementary Table 7. There are two critical issues 
that could affect model simulation and validation. First, Lavery and 
colleagues52 found that CASTNET could overestimate cHNO3 by 5% and 
underestimate cNO−

3
 by 15%, because NH4NO3 could volatilize from the 

Nylon filter. However, cNOT
3
 is generally conserved. Therefore, the biases 

only impact observed εNO−
3

 and are unlikely to influence model simula-
tion. Second, Puchalski and colleagues57 reported a mean relative 
negative bias of 10% for cNH3 from AMoN. Adjusting this potential bias, 
however, does not change trend analyses, and its impacts on model 
simulation will be discussed later (aerosol thermodynamic modelling) 
with sensitivity tests.

Only a fraction of CASTNET sites provide meteorological observa-
tions, which are also critical for thermodynamic analyses. CASTNET 
sites sponsored by the US EPA were terminated in 2011 to support 
AMoN operations. Consequently, there was no overlap between NH3 
and temperature (T) and relative humidity (RH) observations for these 
sites. Therefore, meteorological observations from the Integrated 
Surface Database (ISD) are also included in the integration, which 
consists of global hourly and synoptic observations compiled from 
numerous sources58. However, there are still gaps in T (12%) and RH 
(15%) observations, and 2-m data from the North American Regional 
Reanalysis (NARR) with a resolution of 32 km are used to fill the gap.

To integrate the monitoring networks, we first identified the spa-
tial window for collocation determination by comparing cSO2−

4
, cNO−

3
 and 

cNH+
4

 observations from the CASTNET, IMPROVE and EPA CSN sites as 
well as T and RH observations from CASTNET and ISD located within 
10, 25, 50 and 100 km of each other (Supplementary Figs. 1 and 12 and 
Supplementary Table 8). cNH+

4
, cSO2−

4
 and cNO−

3
 from different monitoring 

networks generally agreed, and no significant difference was found 

with different spatial windows. However, T and RH from CASTNET and 
ISD significantly differ when a spatial window of 100 km is used. There-
fore, a spatial window of 50 km was selected for observation integra-
tion. With this spatial window, we found 68 AMoN sites with at least 
CASTNET and ISD sites located within 50 km. Combining observations 
from these three networks provided all the inputs needed for aerosol 
thermodynamic modelling. All observations were averaged biweekly 
to match the start and end dates of AMoN observations, as it has the 
lowest sampling frequency.

Sites with integrated observations are shown in Fig. 1a. The black 
and red crosses in Fig. 1a are sites established before and after 2015, 
respectively. The sites are grouped according to the five US Regional 
Planning Organizations (RPOs): the Western Regional Air Partnership 
(WRAP), the Central States Air Resource Agencies (CENSARA), the Lake 
Michigan Air Directors Consortium (LADCO), the Mid-Atlantic/North-
east Visibility Union (MANE-VU) and the Southeastern Air Pollution 
Control Agencies (SESARM). These RPOs help state and county agen-
cies develop regional strategies to achieve their air-quality goals. Here, 
these RPOs are referred to as the Western (WRAP), Central (CENSARA), 
Midwestern (LADCO), Northeastern (MANE-VU) and Southeastern 
(SESARM) United States, respectively. Observations from each site 
are shown in Supplementary Figs. 13–17. Annual numbers of biweekly 
observations are listed in Supplementary Table 2. Only sites with more 
than 70% seasonal coverage since establishment are included in the 
following analyses. Excluding the sites established after 2015 does 
not change our trend analyses (Extended Data Fig. 3, Supplementary 
Fig. 3 and Supplementary Table 4) and therefore the simulation results 
or conclusions. The regional Mann–Kendall test was used to derive 
consistent regional trends30, and only statistically significant trends 
(P < 0.05) are reported (Supplementary Table 4).

Although the sites are considered rural, they are generally rep-
resentative of regional population density and emissions, especially 
in the Midwestern and Northeastern United States (Supplementary 
Table 2). Sites in the Western and Central United States are slightly 
more remote, with lower-than-average population densities and SO2 
and NOx emissions. Although some AMoN sites have been reported 
to be impacted by nearby agricultural emission sources37,59, they are 
not collocated with CASTNET sites. About 50% of SO2 emissions in the 
United States came from power plants and were mostly located in rural 
regions in 201725. Highway vehicle emissions accounted for one-third 
of NOx emissions in 2017, which were spread across the United States. 
In 2017, 10% and 5% of NOx emissions were related to power genera-
tion and oil and gas production outside urban areas25. Therefore, the 
majority of the rural sites discussed in this study are representative of 
regional conditions.

Aerosol thermodynamic modelling
We use ISORROPIA-II, a full thermodynamic model for inorganic aerosol 
formation, to simulate the aerosol properties and sensitivities of SIA 
formation to precursors. cNHT

4
, cNOT

3
, cSO2−

4
, cCl−, cNa+, cK+, cMg2+, T and RH 

from the integrated dataset are used as inputs to ISORROPIA-II. The 
model is run in the ‘forward mode’ to simulate gas–particle partition-
ings of NH4

T and NO3
T. Although ISORROPIA-II has been validated with 

observations from intensive field campaigns, using it with biweekly 
averaged observations from monitoring networks has not been tested 
before and requires careful evaluation. We conducted nine case studies 
to investigate the impacts of measurement biases and low temporal 
resolutions (Supplementary Table 3). Following refs. 21 and 12, we evalu-
ated the model performance by comparing simulated and observed 
partitionings of NH4

T and NO3
T.

The simulation results shown in this study include preprocessing 
of the integrated observations from the monitoring networks  
(case 1, Extended Data Fig. 2), because running ISORROPIA-II with raw 
CASTNET inputs and a time step of two weeks (case 3, Supplementary 
Fig. 18) leads to large errors in both εNH+

4
 and εNO−

3
.

http://www.nature.com/naturegeoscience


Nature Geoscience

Article https://doi.org/10.1038/s41561-024-01455-9

CASTNET utilizes an open-face filter and collects both fine- and 
coarse-mode aerosols. Because ISORROPIA-II does not consider aerosol 
size and its mixing state31, using cNa+, cCa2+, cMg2+ and cCl− observations 
from CASTNET directly could cause an overestimation of cNO−

3
 and an 

underestimation of cNH+
4
. Replacing CASTNET observations of NVCs and 

Cl− with those from IMPROVE/CSN (case 2, Extended Data Fig. 9), which 
use an aerodynamic filter to collect PM2.5 samples, reduces the NMB of 
εNH+

4
 from −28% (case 4, Supplementary Fig. 19) to −2%. However, not all 

sites have collocated IMPROVE or CSN sites. Therefore, in the default 
preprocessing (case 1), CASTNET observations of cNa+, cCa2+, cMg2+ and 
cCl− are scaled using the orthogonal distance regressions (ODRs) 
between concentrations of the corresponding elements or ions meas-
ured by IMPROVE or EPA CSN and those measured by CASTNET. When 
there is no collocated IMPROVE or EPA CSN in a site or the correlation 
is weak (r < 0.3 or P > 0.05), the regression result from the closest site 
that meets the requirements is used (Supplementary Fig. 20).

Case 2 also provides an opportunity to investigate the impacts of 
OAs on model performance, because IMPROVE and CSN report concen-
trations of organic carbon in PM2.5 (Extended Data Fig. 9). ISORROPIA-II 
overestimated gaseous NH3 and HNO3 but underestimated NH4

+ and 
NO3

− during periods with high concentrations of organic carbon 
(>5 µg m−3). These periods also have high cK, indicating they originated 
from biomass burning60. ISORROPIA-II failing to reproduce εNH+

4
 and 

εNO−
3

 might be because the observations were averaged biweekly and 
could not capture the rapidly changing conditions when wildfire plumes 
passed by the sites or both NH4

+ and NO3
− were combined with OAs. It is 

also unclear how the increased OAs from wildfires affect aerosol acidity. 
More observations are needed to investigate the impacts of OAs.

A lack of daily and diel variations of T and RH leads to significant 
underestimation of εNO−

3
 (case 5, Supplementary Fig. 21), with an NMB 

of −13% and an ODR slope of 1.63. Thus, for all case studies except for 
cases 3 and 5, ISORROPIA-II was run with a time step of 3 h to reflect the 
diel patterns of T and RH, while cSO2−

4
, cNHT

4
, cNOT

3
, cNVC and ccl− at each  

time step were the same as their biweekly average. The impacts of the 
diel patterns of the chemical inputs are considered in cases 6 (Sup-
plementary Fig. 22) and 7 (Supplementary Fig. 23), which moderately 
improve the model performance. However, they were not used in the 
default case because they require additional empirical assumptions. 
Cases 8 (Supplementary Fig. 24) and 9 (Supplementary Fig. 25) show 
that potential sampling biases do not affect model evaluation.

Additional simulations were conducted with 10%, 40% and  
70% reductions in cNHT

4
, cNOT

3
 and cSO2−

4
 from default preprocessing to derive 

ΔcSIA/ΔcNHT
4
, ΔcSIA/ΔcNOT

3
 and ΔcSIA/ΔcSO2−

4
. We compare ΔcSIA/Δcp to deter-

mine the effectiveness of controlling different precursors instead of 
ΔcSIA directly (Supplementary Figs. 9–11), because ΔcSIA/Δcp is determined 
mostly by the SIA formation regime, whereas ΔcSIA also depends on the 
precursor concentration when a fractional reduction is considered. 
Simulated results for each site are shown in Supplementary Figs. 26–30. 
Regional results are summarized in Supplementary Tables 9–20.

Simulation uncertainties related to observation precisions and 
detection limits (Supplementary Table 7) were estimated using a Monte 
Carlo approach. Observation uncertainties were calculated using the 
corresponding precisions unless the absolute values were smaller than 
their detection limits, in which case the uncertainties were set to the 
detection limits. Additional uncertainties (100%) were added to NVCs 
to account for uncertainties introduced by the scaling processes. Assum-
ing that the observation uncertainties are independent of each other 
and are normally distributed, we generated 1,000 sets of inputs randomly 
for the default preprocessing (case 1) and ran ISORROPIA-II 1,000 times. 
For ΔcSIA/ΔcNHT

4
, ΔcSIA/ΔcNOT

3
 and ΔcSIA/ΔcSO2−

4
, 500 simulations were con-

ducted for each reduction level. The 2.5th and 97.5th percentiles of the 
simulated results were used as the lower and upper bounds (LB and UB) 
of uncertainties. The mean relative LB and UB uncertainties of all sites 
were −21% and 28% for simulated εNH+

4
 and −21% and 22% for simulated 

εNO−
3
. The relative LB and UB uncertainties for εNO−

3
 were much larger than 

those of the observed εNO−
3

 (−6% and 6% on average), highlighting that 
NO3

T partitioning is very sensitive to input errors. The regional mean 
uncertainties are summarized in Supplementary Tables 9–20.

Aerosol pH
Aerosol acidity is a critical characteristic of the multiphase system61. 
Aerosol acidity, together with AWC, drives partitionings of the NH4

T 
and NO3

T. Directly measuring aerosol acidity and AWC is challenging31. 
Chemical transport models have been used to simulate aerosol pH in the 
United States and globally16,32. Thermodynamic models have also been 
used to estimate aerosol pH based on simultaneous observations of gas 
and particle compositions in California, northeastern United States, 
southeastern United States and southeastern Canada12,22,23,27. Here we 
estimate aerosol pH using ISORROPIA-II with the integrated dataset for 
the rural United States from 2011 to 2020. Aerosol pH is calculated as

pH = −log10(γH+mH+ ) (1)

where γH+ and mH+ are the molality-based activity coefficient and molal-
ity (mol per kg water) of hydrogen ions, respectively. γH+ is assumed to 
be unity in ISORROPIA-II when single-ion activities for H+ are required, 
introducing only minor uncertainties.

Guo and colleagues21 have shown the validity of using ISORROPIA-II 
with high-frequency in situ measurements from intensive field cam-
paigns, and this method has been used to study aerosol composition 
and acidity changes around the world12,62,63. However, comparisons of 
pH estimated by different thermodynamic models showed that rela-
tively constant biases exist, which should not affect the trend analyses 
shown here31,64. In addition to the assumption of γH+ = 1, the pH simu-
lated in this study could be slightly biased because the model only 
considers inorganic compounds. Previous studies have shown that 
organic compounds only have minor impacts on aerosol pH in the 
Southeastern United States where concentrations of organic com-
pounds are high12,21.

To understand the drivers of aerosol pH trends, we use a first-order 
approximation to attribute contributions of each factor to pH changes 
annually. For a site at time t of the year (for example, 1 January  
2012, 3:00), the inputs to ISORROPIA-II are ct

SO2−
4

, ct
NOT

3
, ct

NHT
4
, ctNVC, ctCl−, Tt 

and RHt, and change by Δct
SO2−

4
, Δct

NOT
3
, Δct

NHT
4
, ΔctNVC, ΔctCl−, ΔTt  and ΔRHt  in 

a year (that is, cSO2−
4
= ct

SO2−
4
+ Δct

SO2−
4

 at 1 January 2013, 3:00). Then, the 

change in pH resulting from the change in an input variable (v; ΔpHt
v) 

is estimated as a sum of pH changes caused by the same variable but 
with a smaller change (10% of the annual change):

ΔpHt
v = ∑f=0,0.1,…,0.9 [pH(c

t

SO2−
4
, … , vt, … , RHt)

−pH (ct
SO2−

4
+fΔct

SO2−
4
, … vt + ( f + 0.1)Δvt, … , RHt + fΔRHt)]

(2)

Estimating ΔpHt
v using equation (2) minimizes the nonlinear pH 

response to chemical regime shift due to large changes in input vari-
ables. We calculate the annual mean contribution of a variable (ΔpHv) 
to the annual mean pH change (ΔpH) as the time average of equation 
(2). We estimate the error of this attribution method as

Error = ΔpH − ∑
v=cSO2−

4
,…,RH

ΔpHv (3)

The results for each site are shown in Supplementary Figs. 31–35. 
The results shown in Extended Data Fig. 4 are cumulative contributions 
for 2011–2015, 2016–2020 and 2011–2020.

Aerosol pH buffering capacities of HSO4
−/SO4

2−, HNO3/NO3
− and 

NH4
+/NH3 acid–base conjugate pairs were also estimated using the 

multiphase buffer theory developed by Zheng and colleagues32. The 
buffering capacity is defined as the ratio between the amount of acid 
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or base added to the system (nacid or nbase in moles per kg solution) and 
the associated pH change. The analytical expression for the buffering 
capacity (β = dnacid

dpH
= dnbase

dpH
) in an aerosol multiphase buffer system is

β = 2.303[cH+ /μH+ + cOH− /μOH− + ∑
i=SO2−

4 ,NOT
3 ,NH

T
4

K∗
a, icH+ /μH+

(K∗
a, i + cH+ /μH+ )2

ci] (4)

where μH+ and μOH− are the molar masses of H+ and OH−, ci is the total 
concentration of the buffering agent in µmol per m3 air, and only HSO4

−/
SO4

2−, HNO3/NO3
− and NH4

+/NH3 are considered. The effective acid 
dissociation constant, K∗

a, i (in µmol m−3), is

K∗
a, i =

⎧
⎨
⎩

Ka,BOH
AWC
ρw

( 1 + ρw

Hi RTAWC
) , for volatile baseBOH

Ka,HA
AWC
ρw

/ ( 1 + ρw

Hi RTAWC
) , for volatile acidHA

(5)

where Ka, BOH and Ka, HA are the liquid-phase acid dissociation constant 
for BOH and HA expressed in molality32, Hi is the Henry’s law constant 
for BOH or HA in molality (mol kg−1 atm−1)32, and the contributions of 
HSO4

−/SO4
2−, HNO3/NO3

− and NH4
+/NH3 acid–base conjugate pairs to 

the total buffering capacity can be expressed as

βi

β
× 100 =

K∗
a, i[H

+]

μH+

(K∗
a, i +

[H+]
μH+

)
2 ci/β × 100 (6)

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this Article.

Data availability
The integrated observation data that support the findings of this study 
and the source data for figures presented in the main text, Extended 
Data and Supplementary Information are available in Dryad with the 
identifier https://doi.org/10.5061/dryad.zpc866tg3 (ref. 65).

Code availability
The ISORROPIA-II model is available at https://nenes.eas.gatech.edu/
ISORROPIA/index_old.html.
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Extended Data Fig. 1 | Development of air quality monitoring networks in the U.S. and locations of the monitoring networks. (a) Development of air quality 
monitoring networks in the U.S. and (b–g) locations of the monitoring networks. The base map is obtained from Natural Earth.
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Extended Data Fig. 2 | Observed and ISORROPIA-II simulated cNH3, cNH+
4

,  

εNH+
4

, cHNO3, cNO−
3

, and εNO−
3

. The dots and error bars represent the mean values 

and the 95% confidence intervals (CI; as the 2.5th and the 97.5th percentiles) of 1000 
Monte Carlo simulations, respectively. Red lines show orthogonal distance 

regression results (prediction = m·observation + b), and corresponding regression 
parameters and evaluation statistics (determination coefficient (R2), normalized 
mean bias (NMB), and root mean square error (RMSE)) are shown in panel titles. 
Black dashed lines show the 1:1 line. The number of samples is 13813 for all panels.
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Extended Data Fig. 3 | Relationships between emissions and regional mean 
concentrations. Panels (a–c) present the orthogonal distance regression slopes 
of (a) SO2 emission-cSO2−

4
, (b) NOx emissions-cNOT

3
, and (c) NH3 emission-cNHT4

 

regressions for 2011–2015, 2016–2020, and 2011–2020 with observations from 
long-term sites only. Regional mean concentrations are used in the regressions, 
and the sample sizes for each region are 5, 5, and 10 for 2011–2015, 2016–2020, 

and 2011–2020, respectively. ‘*’ or ‘**’ indicate the regression has a p < 0.05 or 
<0.01, respectively. The error bars show uncertainties of the regression slopes 
(95% CI; calculated as ±1.96 standard deviation (SD)). The numbers below are the 
slopes (mean values), the uncertainties (±1.96 SD), and the Pearson correlation 
coefficients, respectively. To illustrate NH3-cNHT4

 correlation results for 2011–2015 
in panel (c), they are scaled by 1/6.
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Extended Data Fig. 4 | Contributions of changes in cSO2−
4

, cNOT
3

, cNHT
4

, cNVC, cCl−, RH, and T to pH changes. The contributions are cumulative contributions 
calculated as described in the Methods section (Eq. (2) and (3)).
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Extended Data Fig. 5 | Regional means of temperature, aerosol composition, 
and pH buffering capacity composition. Regional means of temperature, 
aerosol composition (calculated using ion-equivalent concentrations to reflect 
aerosol charge balance), and pH buffering capacity composition from 2011 to 

2020. Blue, green, and orange areas in panels (f–o) show contributions (cntr) of 
SO4

2−, NO3
T, and NH4

T to aerosol composition or aerosol pH buffering capacity. 
Grey and purple areas show contributions of non-volatile cations (NVC) and 
chloride ion (Cl−) to aerosol composition.
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Extended Data Fig. 6 | Differences in ammonia emission hotspots and 
satellite observed ammonia hotspots. Differences in NH3 hotspots defined 
based on the 2017 emission inventory and satellite observations. (a) NH3 
emissions and (b) NH3 column densities from the Infrared Atmospheric Sounding 
Interferometer (IASI). IASI NH3 column densities are derived from observations 
between 2008–2017 (IASI v2.2R)37. Solid, dashed, and dotted lines show the 

boundaries of the areas <50 km, 50–150 km, 150–300 km within an NH3 emission 
hotspot in panel (a) or an NH3 hotspot in panel (b). NH3 emission hotspots in 
panel (a) are the areas of the areas of the 95th or high NH3 emission rates in 2017 in 
the Contiguous US. NH3 hotspots in panel (b) are the areas of the 95th percentile 
NH3 column density in the Contiguous US. The base map is obtained from Natural 
Earth.
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Extended Data Fig. 7 | Regional means of annual, summer, and winter SIA 
sensitivities to precursor reductions (ΔΔΔcSIA/ΔΔΔcp) at different levels from 
2011 to 2020. Blue, green, and orange solid lines show ΔcSIA/ΔcSO2−

4
, ΔcSIA/ΔcNOT

3
, 

and ΔcSIA/ΔcNHT4
 at a reduction level of 40%, respectively. Blue, green, and orange 

shaded areas in the right panels represent the variabilities of ΔcSIA/ΔcSO2−
4

, 

ΔcSIA/ΔcNOT
3

, and ΔcSIA/ΔcNHT4
 at reduction levels ranging from 10% (brighter 

areas with dashed-line boundaries) to 70% (darker areas with dotted-line boundaries).

http://www.nature.com/naturegeoscience


Nature Geoscience

Article https://doi.org/10.1038/s41561-024-01455-9

Extended Data Fig. 8 | Chemical regimes for SIA formation in summer and 
winter. Panels (a)–(e) show the summer chemical regimes of (NH4)2SO4 
formation. The lines in panels (a–e) indicate the condition that NH4

T explicitly 
balances SO4

2− to form (NH4)2SO4 (1:2 line) for a system that is only consist of NH4
T 

and SO4
2−. Above the line, reducing NH4

T only removes NH3g from the system, such 
thatΔcSIA/ΔcNHT4

= 0. Panels (f)–(o) show NH4NO3 evaporation plays a major role. 

The framework of using aerosol pH and aerosol water content to determine 
NH4NO3 regime developed by Nenes et al.38 is used here (Text S3)20,21. The four 
regimes shown in panel (f)–(o) are relatively consistent when aerosol 
composition changes. The colour of the markers and the lines in panels (f)–(o) 
indicate the year.
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Extended Data Fig. 9 | Impacts of organic compounds on ISORROPIA-II 
performance. Panels (a–f) show observed and ISORROPIA-II simulated NH3, 
NH4

+, HNO3, NO3
−, εNO−3 , and εNH+4

, respectively. Inputs from CASTNET, IMPROVE, 

EPA CSN, AMoN, ISD, and NARR are preprocessed as described as Case 2 in Table 
S4 and ISRROPIA-II was run with a time step (TS) of three hours. The dots are 

coloured by concentrations of aerosol organic carbon from IMPROVE or EPA 
CSN. Red lines show orthogonal distance regression results for all data, and 
corresponding regression parameters and evaluation statistics are shown in 
panel titles. Black dashed lines show the 1:1 line. The number of samples 
(n = 4424) is listed in the title.
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Extended Data Table 1 | Model performance for simulating SIA formation

Normalized mean biases (NMBs, %) and Pearson correlation coefficients (r) between observed and simulated annual mean values are listed for sulfate (SO4
2−), nitrate (NO3

−), nitric acid (HNO3), 
ammonium (NH4

+), ammonia (NH3), molar fraction of NO3
− in total nitrate (εNO−

3
), and molar fraction of NH4

+ in total ammonium (εNH+
4
). Performance of chemical transport models from 

references (refs. 13–16,66) are included for comparison.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We did not use specific software to collect data in this study.

Data analysis ISORROPIA II (v2.3) developed by Georgia Institute of Technology was used for Scripts and packages in Python 3 (v3.9.13) were used for data 
analysis. Packages used in this study include Numpy (v1.21.5), Scipy (v1.9.1), Pandas (v1.4.4), matplotlib (v3.5.2), pymannkendall (v1.4.2), and 
Cartopy (0.22.0). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
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Supplementary Information are available in Dryad with the identifier doi:10.5061/dryad.zpc866tg3. 
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Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Not applicable.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Not applicable.

Population characteristics Not applicable.

Recruitment Not applicable.

Ethics oversight Not applicable.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description In this study, we integrated observations of concentrations of gaseous precursors, aerosol composition, and meteorological 
conditions from multiple monitoring networks. The integrated observations were then used for trend analyses (Mann-Kendall 
regional trend tests) and as inputs for aerosol thermodynamic modeling (ISORROPIA II). 1000 Monte Carlo runs were conducted to 
estimate uncertainties of the simulations.

Research sample We used existing data from routine monitoring networks in the US, including CASTNET (https://www.epa.gov/castnet/download-
data), IMPROVE (http://views.cira.colostate.edu/fed/DataWizard/Default.aspx), EPA CSN (http://views.cira.colostate.edu/fed/
DataWizard/Default.aspx), AMoN (https://nadp.slh.wisc.edu/networks/ammonia-monitoring-network/), and NOAA ISD (https://
www.ncei.noaa.gov/products/land-based-station/integrated-surface-database) as well as reanalysis meteorological data from North 
America Regional Reanalysis (http://nomads.ncdc.noaa.gov/#narr_datasets). The observation data were quality controlled and 
assured by original providers.

Sampling strategy Sites included in this study at least had observations for atmospheric concentrations of ammonia, nitric acid, particulate ammonium, 
particulate nitrate, particulate sulfate, sodium, potassium, magnesium, calcium, and chloride as well as temperature and relative 
humidity. These are the inputs required for aerosol thermodynamic analysis. The integrated dataset is the largest of its kind to our 
knowledge. It covers 68 sites in the rural US. These sites are representative of regional atmospheric conditions. We focused on the 
rural US because there was no urban site met the requirement at the time of analysis. This is reflected in the title and discussed in 
the manuscript. 
For the Monte Carlo uncertainty analysis, simulation results converge (relative standard deviation of sample mean and variance < 5%) 
for all sites after 700 runs. Therefore, the sample size we chose (n=1000) is sufficient. 

Data collection Data were collected by Da Pan directly from sources listed above. 

Timing and spatial scale Site selection started with AMoN sites that have monitoring sites from other networks within 50 km. The spatial window was 
determined by comparing observations for same variable from sites within 10 km, 25 km, 50 km, and 100 km. Since agreement of 
meteorological observations (T and RH) deteriorated significantly with a spatial window of 100 km, we used a 50 km spatial to 
achieve the largest spatial coverage while maintaining minimizing uncertainties caused by site separation. Our analysis started from 
2011 since AMoN monitoring program officially started in that year. More sites with sufficient inputs for aerosol thermodynamic 
analysis became available in 2015. We conducted trend tests for periods of 2011 - 2015, 2016 - 2020, and 2011 - 2020 using all sites 
and sites established in 2011. We did not find significant differences. Thus, 2011 - 2020 results using all sites are presented in the 
main text and presented results of these tests in the SI.

Data exclusions We excluded sites with only data records shorter than two years. Because annual and seasonal averages were discussed extensively 
in this study, we also excluded data from a site in a year if it missed or had invalid data for more than 30% of the time during any 
season in that year.

Reproducibility We conducted reproducibility test by replacing observations of aerosol composition from CASTNET with IMPROVE and EPN CSN. The 
reproducibility test passed since the results were comparable. 
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Randomization We grouped our observations into five regions based on the boundaries of Regional Planning Organizations. Randomization is 
irrelevant to this grouping because its purpose is to illustrate regional differences. 

Blinding Blinding was irrelevant to this study because the unique properties of each sample (i.e., observations from certain site at a given 
time) is critical to our analysis.  

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Palaeontology and archaeology

Animals and other organisms
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