
Environ. Res.: Infrastruct. Sustain. 3 (2023) 021001 https://doi.org/10.1088/2634-4505/acd419

OPEN ACCESS

RECEIVED

6 January 2023

REVISED

15 April 2023

ACCEPTED FOR PUBLICATION

10 May 2023

PUBLISHED

22 May 2023

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Public and private transportation in Chinese cities: impacts
of population size, city wealth, urban typology, the built
environment, and fuel price
Xiangwen Fu1, Denise L Mauzerall1,2,∗ and Anu Ramaswami2,∗
1 Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, United States of America
2 Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, United States of America
∗ Authors to whom any correspondence should be addressed.

E-mail: mauzerall@princeton.edu and anu.ramaswami@princeton.edu

Keywords: urban scaling, compact urban development, sustainable transportation, public transit use, private vehicle number

Supplementary material for this article is available online

Abstract
The development of urban transportation is affected by city population size, wealth, urban
typology, the built environment, and fuel price, and has significant implications for urban
sustainability. We analyze data of 297 Chinese cities between 2017 and 2019 using both simple
regressions to examine the relationships between metrics of public and private transportation and
city size, and multiple regressions to examine the impacts of the above urban factors on public
transit use and private vehicle number. Both public transit use and private vehicle number scale
super-linearly with population and sub-linearly with gross regional product. We find that the
impacts of population size, city wealth, the built environment, and fuel price on transportation
vary across city groups (industrial, mixed-economy, and commercial cities). We find that the
relationships between urban transportation metrics and their factors extracted from intra-city
variations over time are different from those derived from pooling data of multiple cities over time,
indicating the importance of choosing appropriate analyses to inform local policymaking. A key
finding is that to reduce private vehicle ownership, enhancing land use diversity, increasing rail
transit, and expanding taxi fleets are more effective than increasing density in already dense
Chinese cities. Our findings improve understanding of the drivers of public and private
transportation in urban China which are needed to promote sustainable growth of Chinese cities.

1. Introduction

Cities occupy less than 3% of land globally, but accommodate more than half the global population,
contribute 80% of global gross domestic product, and are responsible for 70% of global energy-related
carbon emissions (Dhakal et al 2014). Urban areas, especially those in developing countries, will increasingly
be hotspots of carbon emissions and are critical to decarbonize. Building the infrastructure in existing and
future cities in developing countries to the same level as cities in developed countries would emit 226 Gt of
CO2 (Nagendra et al 2018). This equals four times the emissions from building existing urban infrastructure
and half of the carbon budget consistent with the 1.5 ◦C warming target (Masson-Delmotte et al 2021).
However, if appropriately managed, huge opportunities exist in developing cities to leapfrog carbon intensive
urbanization and lock in positive climate responses through low-carbon infrastructure and sustainable
urban design (Ürge-Vorsatz et al 2018).

How urban characteristics evolve with development across cities is critical to the understanding of urban
systems. Many urban characteristics (e.g. city wealth, material and energy uses) increase with urban
population following a power-law scaling relation (Bettencourt et al 2007, Bettencourt 2013). Equation (1)
shows the relationship, where Y is an urban characteristic, N is population, and Y0 and β are constants.
Depending on the scaling factor β, urban scaling relations can be categorized into super-linear (β > 1),
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linear (β = 1), and sub-linear (β < 1). Characteristics related to innovation and wealth creation scale with
population super-linearly, which social network theories attribute to the super-linear scaling of human
interactions with city size; Characteristics associated with infrastructure and public goods scale with
population sub-linearly, reflecting economies of scale (Bettencourt 2013, Pan et al 2013, Schläpfer et al 2014).
Although the values of scaling factors vary across countries, this power law is shown to be universal
(Bettencourt et al 2007, Keuschnigg et al 2019, Zünd and Bettencourt 2019),

Y= Y0N
β . (1)

While most studies on urban scaling conduct cross-sectional analyses (i.e. a snapshot of multiple cities in
time), temporal scaling analyses (i.e. tracking individual cities over time) are rare. Recent literature
(Depersin and Barthelemy 2018, Keuschnigg 2019, Bettencourt et al 2020) has started to compare the two
types of scaling mathematically and empirically, suggesting that the cross-sectional scaling patterns of
multiple cities do not necessarily represent the development trajectories of individual cities. Based on this
divergence, we employ both a pooled model and a fixed effect model to understand urban transportation
development from cross-sectional and temporal perspectives.

Patterns of urban scaling in China, the largest developing country, have great global implications and
have received much research attention (Ramaswami et al 2018, Zünd and Bettencourt 2019, Lei et al 2021).
These studies confirm that urban scaling patterns of many variables found in cities around the world also
apply to China. However, the scaling relations of transportation variables in Chinese cities have not been
extensively investigated. To our knowledge, there is no city-level study focusing on the scaling of public and
private transportation in China. Since transportation is a central part of urban systems and pivotal to urban
sustainability and wellbeing (Ramaswami 2020), how urban transportation grows with city size should be
better explored.

Aside from population size, other urban factors also affect the scale and characteristics of urban
transportation. Increase in wealth leads to higher private vehicle ownership, more vehicle use, and higher
carbon footprint both at regional (Yang et al 2018, Li et al 2019, Ma et al 2019) and household (Minx et al
2013, Jones and Kammen 2014, Mi et al 2020) levels. Additionally, factors in the built environment are also
related to total travel demand and transportation mode. For instance, compact urban development (CUD) is
promoted as a sustainable urbanization strategy that features improvements in 5 inter-related dimensions
abbreviated as ‘5Ds’ (population/job density, land use diversity, street network design, destination
accessibility, and distance to transit) (Global Platform for Sustainable Cities 2020). Abundant empirical
evidence (Newman and Kenworthy 1989, Cervero 1996, 2002, Cervero and Kockelman 1997, Kockelman
1997, Ewing and Cervero 2001, 2010, Clark 2007, Karathodorou et al 2010, Zegras 2010) has shown that
making cities more compact could lower private vehicle ownership, reduce car use, facilitate walking and
public transit, therefore reducing VKT (vehicle kilometers travelled) and the associated emissions. Moreover,
it has been demonstrated theoretically and empirically that fuel price (fuel tax) affects urban form and
transportation, with higher fuel prices associated with more public transit use and less transportation energy
use (Creutzig 2014, Creutzig et al 2015, Borck and Brueckner 2018).

Previous analyses of transportation in Chinese cities focus on the associations between private vehicle
ownership and the built environment features reflected in the ‘5Ds’ (Li et al 2010, Cao and Huang 2013, Wu
et al 2016, Sun et al 2017, Yang et al 2017, Yin and Sun 2017, Du and Lin 2019). These studies draw similar
conclusions as studies on cities in developed countries, indicating the importance of the urban built
environment to automobile dependence. However, there are several limitations with existing studies. First,
none of them explore the potential effects of urban typology by economic structure (industrial,
mixed-economy, commercial) on transportation as well as its associations with population, wealth, the built
environment, and fuel price. As revealed by Ramaswami et al (2018), the scaling patterns in Chinese cities
depend largely on economic structure. Second, existing findings on how built environment features affect
vehicle ownership are still inconclusive (Sun et al 2017, Yang et al 2017, Yin and Sun 2017). Furthermore, the
differences between results derived from inter-city and intra-city variations are not explored. Therefore, the
relationships between private transportation and its determinants in Chinese cities are worth revisiting.

Here we address gaps in the previous literature by examining the scaling relations of metrics of public
and private transportation of 297 Chinese cities, in conjunction with the impacts of city wealth, urban
typology based on economic structure, built environment variables, and fuel price on transportation.
Figure 1 illustrates our conceptual model. We posit that all the factors above, as well as local policies on
transportation and urban planning, are important in the development of urban public and private
transportation. We focus on three questions: (1) what are the scaling patterns of public and private
transportation across Chinese cities in 2017–2019? (2) Are the impacts of the built environment on public
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Figure 1. Conceptual modeling framework of public and private transportation and their factors in Chinese cities.

transit use and private vehicle number in Chinese cities consistent with CUD theory? (3) How do patterns of
urban transportation metrics vary if analyzed from cross-sectional and temporal perspectives? A better
understanding of these issues is needed to inform sustainable transportation and urban planning.

2. Method

We collect data of 297 Chinese cities, with 4 municipalities (Beijing, Tianjin, Shanghai, and Chongqing) and
293 prefecture-level cities. Following the methodology of (Ramaswami et al 2018), we focus on ‘city propers’
instead of entire cities, since city propers are the central areas of cities and better represent urban
development patterns.

For the analyses of urban public transportation (bus and rail transit), dependent variables include bus
number, annual public transit trip number, and annual public transit passenger kilometers travelled (PKT).
While the bus numbers, bus trip numbers, rail transit trip numbers, and rail transit PKT of cities are
officially reported, there is no available city-level bus PKT data. Only Shaanxi and Jiangxi provinces report
city-level total bus operation mileages in their yearbooks. Based on data from the two provinces from 2017 to
2019, we find a linear relationship between the total bus mileage per year and the number of buses in a city
(see figure S1) that can be applied to other cities. We find the average mileage per bus per year is 54 680 km,
consistent with the national average value from recent literature (Huo et al 2012). Assuming that the average
bus mileage and load factor (taken from an integrated assessment model GCAM-China (Tong et al 2020))
are approximately the same across cities in China, we estimate bus PKT in each city proper and sum with the
rail transit PKT to calculate the PKT of public transit.

For the analyses of urban private transportation, the dependent variable is private vehicle number.
Previous studies (Li et al 2010, Cao and Huang 2013, Sun et al 2017, Yang et al 2017, Yin and Sun 2017) on
private transportation in Chinese cities usually take private vehicle number or ownership as the dependent
variable, since vehicle activity data such as VKT are not available at the city level except for some megacities
(e.g. Beijing, Shanghai). One exception is (Du and Lin 2019), which estimates automobile energy
consumption based on vehicle number, vehicle type, and average fuel use data. However, it fails to consider
the heterogeneity of VKT across cities with different urban forms, which is a key part of CUD theory (Ewing
and Cervero 2010). Therefore, here we continue to use private vehicle number as the dependent variable.

3



Environ. Res.: Infrastruct. Sustain. 3 (2023) 021001

Table 1. Summary statistics of data.

Variable Unit Mean
Standard
deviation Minimum Maximum

Population 10 000-persons 195 299 4.6 2567
GRP 10 000-Chinese Yuan 2.5× 107 4.4× 107 4.9× 106 3.8× 108

Disposable income per capita Chinese Yuan 35 381 9032 21 370 73 849
Population density 10 000-persons km−2 1.27 0.69 0.20 11.52
Land use mix index N/A 0.85 0.05 0.63 0.98
Road density km km−2 6.24 2.33 0.31 16.23
Existence of rail transit N/A 0.12 0.33 0 1
Taxi number per capita Taxies/10 000-persons 17.6 14.0 0.33 142.3
Total bus number N/A 1838 3089 16 25 624
Annual public transit trip number 10 000-trips yr−1 29 759 78 877 56 713 386
Annual public transit PKT 10 000-person km yr−1 269 913 663 733 1750 6104 695
Private vehicle number 10 000-vehicles 72.6 76.0 3.2 497.4
Gasoline price Chinese Yuan/L 6.65 0.54 5.66 8.38

Note: N/A means ‘not applicable’.

The independent variables are described as follows:

(1) Population: There are two types of population data in China. Resident population refers to the
population living in a city within a period, while registered population refers to people with hukou
(officially registered) in a city without necessarily living there (Beijing Municipal Bureau of Statistics
2021). Here, the urban population is defined as the resident population (pop) in city propers, as the
resident population better characterizes the real scales and dynamics of cities.

(2) City wealth:We use gross regional product (GRP) of city propers to quantify the wealth of cities.
However, as pointed out by (Ramaswami et al 2018), GRP cannot be exactly converted to urban
household income and this conversion depends highly on urban typology. Therefore, we also include
the disposable income per capita of urban residents (income) in our analyses.

(3) The built environment: The urban form factors considered include population density (pop den,
resident population/urban built-up area (constructed area with basic infrastructure within urban
administrative divisions)), land use diversity (land use mix, represented by an entropy-like index (Cao
and Yang 2017, Xu et al 2018)), and road density (road den, total road length/urban built-up area). To
capture the level of urban public transit provision, we also add a dummy variable indicating whether a
city has urban rail transit (rail), and taxi number per capita (taxi num, total taxi number/resident
population). These variables are included to explore the effects of ‘5D’ parameters in CUD theory on
transportation in the Chinese urban context.

(4) Fuel price:We use the regulated price of standard gasoline, type 92, to represent the fuel price
(fuel price). The fuel price in China is regulated at the provincial level by the National Development and
Reform Commission, and the retail fuel price in a province fluctuates around the regulated price by less
than 5% based on local cost (National Energy Administration 2011).

All data are collected from official sources, including China City Statistical Yearbooks, China Urban
Construction Statistical Yearbooks, the website of China Association of Metros (China Association of Metros
2021), databases of national oil price (CNGold 2023, EastMoney 2023), provincial statistical yearbooks, and
city-level statistical bulletins. We focus on the data from 2017 to 2019 to investigate the recent patterns of
urban transportation development in China. To exclude the impacts of COVID-19 on transportation, we do
not include data after 2019. After excluding missing data, we get 858 city-year observations for public
transportation and 778 for private transportation. Table 1 lists the summary statistics of our data.

Based on existing urban theories, we propose the following hypotheses:

H1. Both public transit use and private vehicle number scale super-linearly with urban population (due to
the super-linear scaling of human social interactions in cities (Bettencourt 2013)).

H2. Both public transit use and private vehicle number are positively associated with city wealth.
H3. Public transit use is positively associated with population density, land use diversity, road density, and

the existence of rail transit, while negatively associated with taxi number per capita.
H4. Private vehicle number is negatively associated with population density, land use diversity, road density,

and public transit provision (the existence of rail transit, and taxi number per capita).
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H5. Public transit use is positively associated with fuel price, while private vehicle number is negatively
associated with fuel price.

H6. The impacts of population, wealth, the built environment, and fuel price on public transit use and
private vehicle number vary across cities with different economic structures.

To examine the hypotheses above, we conduct three types of analyses:

(1) Simple population-scaling and GRP-scaling relationships of all cities.We assess how transportation
variables scale with urban population and GRP separately. Through simple log-log regressions, we
determine the scaling patterns of these variables.

(2) Simple scaling relationships in different categories of cities.We explore whether the scaling relations
of transportation variables with population and GRP are dependent on urban typology. We categorize
cities into three types by economic structure (industrial, mixed-economy, and commercial) based on the
GRP shares of different industries and build the categorical regression model following the method of
(Ramaswami et al 2018).

(3) Bivariate multiple regressions of transportation in different categories of cities. We further employ
multiple log-log regressions to examine the combined impacts of population, wealth, urban typology,
the built environment, and fuel price on public transit PKT and private vehicle number. The variance
inflation factor analysis shows there is no strong collinearity between independent variables. Besides the
regressions where we simply pool all data across cities and years together (‘the Pooled model’), we also
perform two sets of fixed effect regressions (‘the City model’ and ‘the Year model’), where the city or
year fixed effects are included. The fixed effect regression is preferred over random effect regression
based on the result of Hausman test. As an example, the categorical regression equation of the City/Year
model is as follows:

ln([pub PKTit, veh numit]) =
∑3

j=1
[aj × Ij + bj × Ij × ln(incomeit) + cj + Ij × ln (popit) + dj × Ij

× ln(pop denit) + ej × Ij × ln(land use mixit) + fj × Ij × ln(road denit)

+ gj × Ij × railit + hj × Ij × ln (taxi numit)+ kj × Ij × ln (fuel priceit)]

+ δi or τt + εit. (2)

In equation (2), [pub PKTit,veh numit] is a vector of public transit PKT and private vehicle number in
city i and year t, Ij are the dummy variables of city type, δi is a city-specific term absorbing all factors
constant over time (city fixed effect), τt is a year-specific term absorbing all factors constant across cities (year
fixed effect), and εit denotes the error term. While the Pooled model estimates coefficients based on both
inter-city and intra-city variations of variables over time, the coefficients of the City model are derived from
intra-city variations over time and averaged across cities, and the coefficients of the Year model are derived
from inter-city variations within a specific year and averaged over years.

3. Results

3.1. Simple regression of public transit use
Table 2 shows the population- and GRP-scaling relationships for public transit use analyzed using number of
buses, number of public transit trips, and public transit PKT.

The results of the non-categorical model (all cities grouped together) demonstrate that all three
dependent variables scale super-linearly with urban population (supporting hypothesis H1). This implies
that public transit use has similar scaling patterns as urban characteristics related to wealth creation and
innovation. Due to the agglomeration effect, residents in cities with larger populations take public transit
more frequently. Scaling relations with GRP are sub-linear or linear, as GRP represents city wealth and scales
super-linearly with urban population.

The results of the categorical model (cities grouped by economic structure, see figures 2 and S2) illustrate
the differences in scaling patterns across groups of cities. For population-scaling, the scaling factors of transit
trip number and PKT differ by city type (supporting hypothesis H6), with commercial cities having the
highest scaling factors and industrial cities having the lowest (figures 2(a) and S2(c)). We also perform
regressions against normalized population size for each city group and find similar results, suggesting that
the scaling difference across city groups is not due to difference in city size distributions
(supplementary note 1). In addition, we find that the linearity of population-scaling also depends on city
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Figure 2. Scaling relationships of public transit PKT with respect to (a) population and (b) GRP in industrial, mixed-economy
and commercial cities. Regressions within each category are indicated by the colored lines.

type. Mixed-economy and commercial (industrial) cities show super-linear (linear) scaling of public transit
use with population. Thus the agglomeration effect in Chinese industrial cities is not strong enough to
generate super-linear growth in public transit, perhaps due to relatively small city sizes
(Ramaswami et al 2018). When we use GRP as the scaling metric, however, the effect of city type on transit
use is smaller. For GRP-scaling, although the relative relationship of scaling factors across city groups
remains essentially the same (figures 2(b), S2(b) and (d)), the inter-group differences are generally
insignificant (table 2) due to the different GRP-population scaling relations across city groups in China
(Ramaswami et al 2018). Therefore, it is likely that cities with more commercial activities experience faster
scaling of GRP with population and hence faster scaling of public transit use.

3.2. Multiple regression of public transit PKT
The multiple regression results of public transit PKT against various variables are summarized in figure 3
and table S1. The Year model and the Pooled model produce similar results for most independent variables
except for fuel price, while the City model results are quite different. The coefficient change in fuel price in
the Year model is because the fuel prices of all cities vary similarly over time and absorb much of the year
fixed effect. We therefore just compare the results of the Pooled (the most common scaling approach) and
the City models. We find the City model better controls for omitted city-level variables and thus better
explains public transit PKT (greater R2) variations than the Pooled model.

In the Pooled model (figure 3(a)), the two dominant drivers of public transit PKT are population and
income which both show positive correlations with PKT (supporting hypothesis H2). The coefficient of
population is significantly larger than 1, demonstrating that the super-linear scaling of transit PKT with
population remains solid after controlling for other factors. Results for the impacts of the built environment
are unexpected. First, population density and land use mix are negatively associated with transit PKT. This is
opposite to hypothesis H3 and the finding of a study on US cities (Wu et al 2019a). We find that in Chinese
cities, if other variables are held constant, transit PKT decreases by 0.5% for each 1% increase in population
density. A possible explanation is that in denser cities, driving is replaced by walking and mechanical and
electric cycling rather than by buses and subways. Additionally, the densities of most Chinese cities may be
higher than a threshold over which density has less impact on public transit use. Second, we find a positive
correlation between taxi number per capita and transit PKT, implying that taxies and public transit are
complements in Chinese cities.

There are four notable differences between the City (figure 3(b)) and the Pooled models. First, the
coefficient of population for all cities grouped together drops to 0.48 (sub-linear scaling). It shows that only
40% of the scaling of transit PKT with population measured from the pooled data can be attributed to
population growth within individual cities, while the rest 60% are associated with city heterogeneity. This
echoes the finding of recent literature that the scaling forms of urban variables derived from pooling data of
multiple cities and years cannot be directly applied to the dynamics of individual cities (Depersin and
Barthelemy 2018). Second, the coefficient of income is much less for mixed-economy cities and even
becomes negative for industrial cities in the City model. This might be ascribed to two competing effects of
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Figure 3. Regression results of (a) the Pooled model and (b) the City model of public transit PKT. The points indicate the
coefficient values while the ranges show the 95% confidence intervals. Black, grey, red, and blue plots represent all,
mixed-economy, industrial, and commercial cities, respectively.

city wealth on resident preference over transportation modes. On one hand, wealthier cities have better
developed transit infrastructure, promoting more public transit use. On the other hand, income increases
would enable car purchases and lead to a shift from using public transit to driving. While the latter impact
should be homogeneous in the two models, the former impact reflects city-level path dependence due to the
lock-in effect of urban infrastructure and is hence more dominant when inter-city variations are included
(the Pooled model). Third, the coefficients of population density and land use mix become insignificant,
implying that improving the ‘5Ds’ within individual cities may not enhance public transit use significantly,
although there may be a threshold density above which transit and taxi uses become widespread (Global
Platform for Sustainable Cities 2020). Fourth, fuel price becomes positively associated with public transit
PKT (supporting hypothesis H5) in industrial and mixed-economy cities, which suggests that increased fuel
price makes public transit more economically favorable in these two city groups. In commercial cities,
however, the effect of fuel price is likely attenuated due to higher income.

3.3. Simple regression of private vehicle number
Table 3 and figure 4 present the population- and GRP-scaling relations of two sets of private vehicle numbers.
The officially reported vehicle numbers (uncalibrated) correspond to the registered populations of entire
Chinese cities (Moody et al 2019), while in this study urban population refers to the resident populations of
city propers. To address this mismatch between vehicle numbers and populations, we calibrate the vehicle
numbers (equation (3)) assuming the vehicle numbers per capita of the two kinds of populations are the
same

veh numcalib = veh num ∗ resident pop of city proper

registered pop of city
(3)
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Figure 4. Scaling relationships of (a), (b) uncalibrated and (c), (d) calibrated private vehicle number with respect to
(a), (c) population and (b), (d) GRP in industrial, mixed-economy, and commercial cities. Regressions within each category are
indicated by the colored lines.

The calibration substantially increases the scaling factors in both the non-categorical and the categorical
models and appears to better characterize the scaling relations of private vehicle number (improved R2 in
table 3). The population-scaling relationship in the non-categorical model even turns from sub-linear to
super-linear. This is because large cities tend to have higher resident population than registered population,
while the opposite is true for small cities. In addition, the calibration changes the rank of scaling factors in
different city groups. The uncalibrated vehicle number scales faster with urban size in industrial cities than in
mixed-economy and commercial cities, while the calibrated vehicle number scales faster in commercial and
mixed-economy cities. Like public transit use, private vehicle number also scales super-linearly with
population (supporting hypothesis H1) and sub-linearly with GRP, implying a common scaling pattern of
transportation in Chinese cities.

3.4. Multiple regression of private vehicle number
The multiple regression results of private vehicle number are presented in figure 5 and table S2. Again, the
Pooled and City models yield contrasting results.

The Pooled model (figure 5(a)) demonstrates that wealth and population have substantially higher
influences than built environment factors and fuel price. The scaling of private vehicle number with
population remains super-linear. Income is positively correlated with vehicle number in all types of cities
(supporting hypothesis H2), but the rates of fleet growth are significantly different across city groups. Vehicle
number has a high sensitivity to income growth for industrial cities, with the income coefficient (2.1) more
than twice the value for commercial cities (0.8). This echoes the findings of previous studies on vehicle
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Figure 5. Regression results of (a) the Pooled model and (b) the City model of private vehicle number. The points indicate the
coefficient values while the ranges show the 95% confidence intervals. Black, grey, red, and blue plots represent all,
mixed-economy, industrial, and commercial cities, respectively.

ownership expansion rates across countries (Dargay and Gately 1999, Dargay et al 2007). With lower base
vehicle ownership and larger potential of fleet expansion, wealth increase in industrial cities drives more
residents to purchase cars than in the other two city groups. Additionally, the Pooled model shows that more
compact urban form (i.e. higher density and land use mix) is associated with lower private vehicle number,
especially in mixed-economy cities. This supports part of hypothesis H4 and is consistent with CUD theory
and existing studies on Chinese cities (Li et al 2010, Cao and Huang 2013, Sun et al 2017, Yin and Sun 2017).
Moreover, we find a positive association between private vehicle number and taxi number per capita. This
contradicts with part of hypothesis H4 and implies that there are omitted variables determining the total
travel demand by vehicle within a city.

In the City model (figure 5(b)), however, while population and income remain the dominant factors, the
scaling of vehicle number with population becomes linear instead. Besides, the impact of population density
is attenuated and only weakly significant for commercial cities. It shows that densification may not lead to a
shrinking fleet in individual Chinese cities, consistent with the finding of (Cao and Huang 2013) that the
negative effect of population density on private car ownership in China varied across years and became
insignificant after 2005. Nevertheless, it should not be interpreted as that densification is ineffective to reduce
auto dependence in general, as the densities of many Chinese cities are already high compared to their global
counterparts (Güneralp et al 2020) and probably above the threshold to effectively influence travel behaviors
(Wu et al 2019b). Moreover, we find that other CUD strategies (i.e. improving land use diversity and
building rail transit) could contain fleet growth within a city. For street network design, although we find no
correlation between road density and fleet size when all cities are grouped together, there are significant and
different associations between the two variables across city groups (supporting hypothesis H6). Increasing
road density is associated with larger vehicle number in commercial cities but smaller fleet size in industrial
cities, indicating a dual role of road density. On one hand, high road density represents denser street
networks and more intersections, which promotes walking and cycling rather than driving. On the other
hand, high road density also implies better road infrastructure (e.g. more parking lots), enhancing the
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convenience of driving. Our results indicate that the former influence is stronger in industrial cities, while
the latter overtakes the former in commercial cities, probably due to their relatively high vehicle ownerships.
Additionally, expanding taxi fleet in individual cities could significantly reduce residents’ dependence on
private vehicles, supporting the idea of developing alternative transportation to improve urban sustainability.
Finally, higher fuel price is not significantly associated with lower private vehicle number but may still make
driving less preferable than taking public transit (see section 3.2).

4. Discussion

China has a huge vehicle fleet, making up 14% of global automobiles (Li et al 2017) with numbers increasing
by over 200% in the past decade (China Association of Automobile Manufacturers 2022). However, private
vehicle ownership in China is still much lower than many developed countries. There are only 0.17 private
vehicles per capita in China (National Bureau of Statistics of China 2022), while that number in the US is
0.75 (US Federal Highway Administration 2022). Thus, the vehicle number in China is likely to keep
increasing over the next few decades (Li et al 2019, Ma et al 2019). Although Chinese cities are more compact
than many cities in developed countries, they witnessed a sharp decline in population density between 1970
and 2010 (Güneralp et al 2020). If the urban sprawl in China continues, residents will increasingly rely on
private vehicles and the fleet growth will accelerate further.

Transportation is a major contributor to CO2 and air pollutant emissions in China, accounting for 10%
and 23% of Chinese CO2 and NOx emissions (Zheng et al 2018). Transportation also contributes indirectly
to PM (particulate matter) formation and is the largest source of PM in some major Chinese cities (Li et al
2017). Since China pledges to achieve carbon neutrality by 2060, future growth in vehicle numbers will
require rapid fleet electrification. If sustainable urban planning could reduce auto dependence, it would slow
increases in private vehicle ownership and use, facilitate transportation decarbonization, improve urban
street life, and bring considerable climate and air quality co-benefits.

Using aggregated data of 297 Chinese cities in 2017–2019, we explore the impacts of population, wealth,
urban typology, the built environment, and fuel price on urban transportation. We find that both public
transit use and private vehicle number scale super-linearly with population and sub-linearly with GRP. As
urban population increases, although the agglomeration of people and capital catalyzes economic growth, it
also intensifies transportation activities and incurs environmental impacts. This implies that the
decarbonization of transportation in megacities is particularly critical and requires more effort.

Through multiple regressions we further demonstrate that wealth, the built environment, and fuel price
have significant associations with urban transportation. We find that wealthier, less compact cities tend to
have more private vehicles. Specifically, the private vehicle number scales super-linearly with income,
implying a potential explosive increase in vehicle number with future economic development. We find that
currently improving land use diversity and providing rail transit and taxies are more effective strategies than
further increasing population density to reduce auto dependence in Chinese cities, probably due to the
threshold effect of density. The impact of taxies implies that promoting similar transportation modes
(e.g. dynamic ride sharing) might be promising as well to contain the fleet growth. Additionally, we find
higher fuel price is associated with more transit use within a city, suggesting that fuel tax is a potentially
effective policy to promote public transit use. However, we also find that residents in cities with higher
density and land use diversity take less public transit. This implies that the travel behavior of Chinese urban
residents is more complicated than the theories built upon observations in developed countries (table S3).

Categorizing cities based on economic structure yields interesting results. We find that different types of
cities (industrial, mixed-economy, commercial) have different speeds of scaling. Moreover, the sensitivities of
transportation to some factors vary significantly across city groups. Densifying road networks could
effectively contain the size of private vehicle fleets within an industrial or a mixed-economy city, but may
only incentivize car purchases in a commercial city. Therefore, transportation policies should not be
universal across cities but should be contingent on urban typology.

Additionally, we find striking differences between the Pooled and the City model results. The scaling of
transit use and vehicle number with population is no longer super-linear when the analysis focuses on
intra-city variations over time. For private vehicle ownership, teasing out intra-city variations attenuates the
negative density effect and reverses the taxi effect from positive to negative. These differences imply strong
city-specific historical inertia or policy heterogeneity of transportation development. While many studies on
urban transportation extrapolate results from inter-city variations (Li et al 2010, Sun et al 2017, Yin and Sun
2017, Lei et al 2021, Wu et al 2021), here we show that a pattern generalized from a snapshot of multiple
cities cannot be used to predict the evolution of a specific city. To inform policymaking, care must be taken
to ensure that the analysis approach matches the policy goal. For emergent city planning based on general
urban development patterns, cross-sectional analysis that captures inter-city variations is of great value. For
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optimizing transportation in existing cities, city heterogeneity should not be ignored, and temporal analysis
of intra-city variations is preferred.

Our results are subject to the following limitations. First, as city-level VKT data are unavailable for most
Chinese cities, we use vehicle number to characterize private transportation without considering the
variations of vehicle use intensity. Previous studies indicate that compact urban form could also reduce
private VKT in China (Cao and Yang 2017, Chen et al 2017, Jiang et al 2017). Therefore, our results
underestimate the potential of optimizing the built environment to reduce personal travels. Second, when
calibrating the private vehicle number, we assume that the probability for residents without hukou to own a
car is the same as registered residents. Since people without hukou are generally less financially capable of
owning a car (Yao and Wang 2018), the vehicle numbers of cities with high in-migration are overestimated.
Third, due to the lack of city-level data, variables characterizing other travel modes (walking, cycling,
ride-hailing, etc) are not included. However, these travel modes are likely to affect the uses of public transit
and private vehicles.

5. Conclusions

Our study reveals that urban transportation is shaped collectively by population, city wealth, urban typology,
the built environment, and fuel price. We demonstrate that the urban transportation development patterns
derived from pooling data of multiple cities, as previous studies have done, does not characterize the
evolution of individual cities over time. We find that diversifying land use and promoting rail transit and
taxies are effective in reducing private vehicle ownership in Chinese cities. Our findings support the idea of
improving urban transportation through compact growth. While in this paper we only include the impacts
of bus, rail transit, and taxies, future work should consider exploiting data of other urban travel modes (e.g.
ride-hailing, bicycle-sharing) to further examine how land use and transportation infrastructure influence
the travel choices of urban residents. Future work should also explore currently feasible policies to improve
urban planning in China. Given the long-term implications of urban land use and infrastructure, early
planning is necessary to ensure a sustainable future of cities.
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