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SCIENCE FOR SOCIETY Climate change has been driving desertification in many parts of the world, from
the southwestern United States to Sub-Saharan Africa. Deserts often encroach over arable land, reducing
income for farmers and causing dust storms with large health impacts on the local population and global
climate effects. Reforestation efforts protect the sand from being lifted by thewind, but these projects often
fail because these areas are very dry, and the plants do not survive. Understanding how well different stra-
tegies work in this harsh environment is of global interest because many countries use reforestation as an
official offset for their CO2 emissions. However, because of the mismatch between planted and surviving
trees, the accounted carbon sequestered in these forests is overestimated. In this study, we use a new
type of satellite data looking at vegetation water and photosynthesis to compare the success of different
reforestation methods, using China’s Three-North Shelterbelt Program as a case study.
SUMMARY

Desertification in Northern China degrades air quality
in China’s eastern cities by causing frequent dust
storms. To stop desert expansion, China’s govern-
ment initiated the Three-North Shelterbelt Program,
a large-scale reforestation project. Many issues
with the project have been raised, from the choice
of ill-adapted species to planting methods. Recently,
the government implemented ‘‘natural reforesta-
tion’’—closing former pastures to let vegetation
regrow naturally. Unfortunately, it has been difficult
to estimate the large-scale success of natural refor-
estation becausemeasuring arid ecosystem produc-
tivity is a challenge for optical remote sensing. Here,
we use satellite data to monitor vegetation water
content and photosynthetic activity, thereby quanti-
fying changes in vegetation biomass and productiv-
ity in Northern China. These satellite data corrobo-
rate official reforestation data. Our results show
that vegetation activity is strongly correlated with
both natural and traditional active reforestation, indi-
cating opportunities for new natural reforestation
techniques combined with satellite monitoring in
other semi-arid regions.
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INTRODUCTION

Desertification in arid or semi-arid areas has been an environ-

mental issue in regions as geographically diverse as Northern

China, the Sahel, or the southwestern United States.1–3 Desert-

ification is associatedwith anthropogenic causes,4 such as over-

grazing,5–7 logging, or unsustainable agricultural practices,2,8

and climate change,9 specifically shifts in the spatial and tempo-

ral patterns of rainfall10–12 and gale days (wind velocity greater

than 17 m/s).13,14 When combined, these effects can lead to

rapid vegetation cover loss, and subsequent wind erosion can

also cause large dust storms,15 leading to increased fine partic-

ulate air pollution with associated adverse health impacts16,17

and desert encroachment onto vegetated and inhabited

areas.18,19 In China, desertification has occurred mostly in the

north of the country.4,20–22 In response to the expanding desert,

the Chinese government has implemented multiple large-scale

projects. The Three-North Shelterbelt Program (TNSP, 1978 to

2050, Figure S1)23–26 presents a unique challenge, because it

is specifically focused on reforesting semi-arid ecosystems.

So far, very few studies have focused specifically on the TNSP,

but the sparse evidence points at a mismatch between the

very large increase in reforested area reported by the govern-

ment27,28 and the more modest increase observed from optical

remote sensing.29,30 A low survival rate of planted trees is usually

assumed to explain this discrepancy.28 However, dryland vegeta-

tion has a lowgreenness index (Figure S2) thatmakes it difficult for
lished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Evolution of the Total Reforested Area Classified by Refor-

estation Method

Reforestation data from the China Statistical Yearbooks52 showing the area

(hectares/year) reforested each year bymanual planting, airplane planting, and

natural reforestation for the entire TNSP area between 2003 and 2015.
optical remote sensing to capture, leading to an underestimation

of vegetation cover.31,32 Other concerns include the choice of

plantingmethod,30 as well as the level of care given to the trees.28

In addition, the use of inappropriate species can deplete soil

water,33–35 potentially leading to widespread diebacks during

droughts.36,37 As a result, the scientific community in China

and abroad has called for better planning from the government

when designing projects.38

The most common form of reforestation in China is ‘‘active

reforestation’’ through manual and airplane planting, either by

local communities or occasionally by the military.39 This tech-

nique has been especially successful in wetter areas in China

where ecosystems are not water limited.40–43 Recently, natural

reforestation, i.e., closing of former pastures or fields to let the

natural shrub savanna recover,30,44,45 has become increasingly

common. This new direction in China’s reforestation effort is

based on models and experiments showing that even dryland

ecosystems should be able to recover if adverse human effects

are removed.46,47 However, because of its recent implementa-

tion, no data exist on how well natural reforestation does

compared with active reforestation.

Assessing the success of natural reforestation without visiting

the thousands of individual sites is indeed a challenge in itself,

because of the inherent sparseness and low greenness index

of the vegetation that make it difficult tomap using traditional op-

tical remote sensing (Figure S2) such as Landsat or vegetation

indices from the Moderate Resolution Imaging Spectroradiome-

ter (MODIS).31,32 Here, we propose a novel use of active micro-

wave remote sensing data from the QuikSCAT satellite48 and

solar-induced chlorophyll fluorescence (SIF)49 from the Global

Ozone Monitoring Experiment 2 (GOME-2) satellite50,51 to

examine vegetation water content and photosynthetic activity,

respectively.

Here, we compare the trends in vegetation water and photo-

synthetic signals with the official reforestation statistics provided

by the Chinese government.52 We find that both vegetation
signals show an increase that is likely associated with an increase

in vegetation cover over the years covered by the satellite data. In

particular, we find strong correlations between vegetation indices

and the increase in areas reforested through both active and nat-

ural reforestation techniques. Finally, a similar analysis is con-

ducted using the Enhanced Vegetation Index (EVI) fromMODIS,53

and we find that both photosynthesis and water content are more

strongly correlated with reforestation than EVI in the case of nat-

ural reforestation, but not for active reforestation, indicating that

this new remote sensing product has the potential to improve

our assessment of reforestation projects over drylands.

RESULTS

Reforestation Method Evolution
Over the past few decades, the Chinese government has contin-

uously readjusted its planting strategies to increase survival

rates. Planting data collected from the Yearbooks52,54 is pre-

sented in Table S3 available in the Supplemental Information

and summarized in Figure 1. We found that airplane planting

was essentially abandoned by 2006, likely because of its low

success rate. Manual planting experienced a sharp decline be-

tween 2003 and 2006, before stabilizing at around 4,000,000

hectares per year. Finally, natural reforestation was introduced

in 2007 and quickly stabilized at around 2,000,000 hectares

per year. In Inner Mongolia’s sub-provinces,54 similar trends

were found, with very little use of airplane planting; a stable num-

ber of hectares was reforested by manual planting, and an

increasing area was reforested through natural reforestation.

Temporal Evolution of Vegetation Water Content and
Photosynthetic Activity
The amount of photosynthesis happening in leaves can be

captured from satellites with SIF retrievals. As vegetation cover

increases, so does the number of leaves and the strength of

the SIF signal emitted. After correcting for signal drift (Figure S3

and Equation 2), SIF data show clear trends for the time period

between the launch of the GOME-2 satellite in 2007 and 2017

(see Figure 2). Overall, the photosynthesis signal increased the

most in the eastern side of the TNSP region, whereas the north

and most of the west showed a small decline in SIF. These areas

are the driest of the TNSP region, and this decline is likely caused

by a decrease in vegetation cover due to the harsh environ-

mental conditions.

Similar to photosynthesis, vegetation water content also in-

creases with vegetation cover. The water content of leaves

and branches can be captured by the backscattering cross-

section of active microwave remote sensing (s0 usually ex-

pressed in dB). Over the TNSP area, the trends in QuikSCAT

backscatter s0 between 2000 and 2009 showed a similar spatial

pattern (Figure 3) as SIF, with the eastern region of the TNSP

experiencing an increase in canopy water that is likely associ-

ated with an increase in vegetation cover. Over the same

period, the western half of the TNSP area exhibited an overall

decrease in s0. The observed pattern matches the mean annual

precipitation distribution,23 which shows that the western half

of the TNSP receives less than 200 mm/year of rain, whereas

the eastern half is wetter with some areas receiving up to

700 mm/year of rain.
One Earth 2, 98–108, January 24, 2020 99
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Figure 2. Maps of SIF Data for All 13 Provinces Involved in the TNSP

(A) Average SIF retrieval in 2007.

(B) Average SIF retrieval in 2017.

(C) Slope (mW/m2/nm/sr/year) of the best linear fit of the evolution of SIF retrievals between 2007 and 2017 (see Figure S4). An increase (decrease) in SIF

corresponds to an increase (decrease) in photosynthesis that is likely due to an increase (decrease) in vegetation cover.
Comparison between s0 and SIF
While SIF and s0 reflect the photosynthesis activity and water

content of the biomass, respectively, these quantities are tightly

correlated in croplands.55 Similarly, our analysis showed these

quantities are generally correlated, albeit there are differences

based on the MODIS land cover classification (Figures 4 and

S9). Here, we combined different land cover types together: for-

est (n = 1,363) includes evergreen needleleaf, evergreen broad-

leaf, deciduous needleleaf, deciduous broadleaf, and mixed/

other trees; low vegetation (n = 2,556) refers to closed shrub-

lands, open shrublands, woody savannas, savannas, and grass-

lands; croplands (n = 1,006) includes both croplands and crop-

land/natural vegetation mosaics; and barren (n = 1,127) only

includes pixels categorized as barren in the MODIS land cover

map. Pixels categorized as urban and built-up land were

removed from the QuikSCAT dataset, confirming that the

method to exclude urban pixels using the s0 threshold worked

as intended (see description in the section on Microwave

Remote Sensing).

We found that there was a significant correlation between SIF

and s0DH (D, descending overpass; H, HHpolarization) for all vege-

tated land use types (R2 = 0.16, p < 0.001 in 2007, R2 = 0.11, p <

0.001 in 2008, R2 = 0.20, p < 0.001 in 2009), whereas no correla-

tion was found for the barren land (p = 0.16 in 2007, p = 0.39 in

2008, R2 = 0.02, p < 0.001 in 2009). Similar results were found

with s0AV, s
0
AH, and s0DV (A, ascending overpass; V, VVpolarization).

These results were anticipated, because barren lands are ex-

pected to have virtually no signal in SIF due to the lack of vegeta-

tion; but in non-vegetated areas, active microwave remote

sensing is sensitive to variations in soil moisture and surface

roughness.56,57

Correlation with Reforestation
Comparing the evolution of SIF data with reforestation data

obtained from the Yearbooks, we found a strong correlation

between the two (Figure 5). In particular, there was a similar cor-

relation between photosynthetic activity fromSIF and areas refor-

ested by land closure, e.g., natural reforestation (R2 = 0.54,

p < 0.0001), then exists between SIF and active reforestation

(R2 = 0.57, p < 0.0001). s0DH shows a much stronger correlation

with natural reforestation than with active reforestation

(R2 = 0.68, p < 0.0001 for natural reforestation and R2 = 0.46,
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p < 0.001 for active reforestation), and similar results were ob-

tained for the other data from QuikSCAT (Figure S7). In this

case, Beijing City was removed from the analysis because it

was a clear outlier, with an average s0DH about three times as

high as the other provinces. This is likely due to the limited extent

of non-urban land and the strong impact of urban development

on QuikSCAT data.58 These results indicate that natural refores-

tation had a strong, positive impact on vegetation cover in the

TNSP area that is comparable with the increase in vegetation

cover from active reforestation.

Inner Mongolia Case Study

In the case of Inner Mongolia, we compared the sub-province-

level evolution in SIF and s0DH with the reforestation data obtained

from the Inner Mongolia Yearbooks.54 We found a strong, signif-

icant correlation between photosynthetic activity and reforesta-

tion efforts (Figure 6), both through natural reforestation (R2 =

0.52, p < 0.0001) and active reforestation (R2 = 0.76, p <

0.0001). Wuhai City was removed from the analysis in this

case, because the footprint of the sub-province was smaller

than a single SIF pixel. A similar analysis performed for s0DH found

a much weaker relationship with both natural reforestation (R2 =

0.14, p = 0.05) and active reforestation (R2 = 0.16, p = 0.04). Here,

four outliers stand out: Wuhai City and Ordos City showed an in-

crease in s0DH greater than what would be expected based on the

reforested area in each sub-province. One hypothesis is that the

effect of urban expansion has not been fully removed from s0DH
58

and is affecting the analysis at the sub-province level because of

the small area considered compared with the province-level

analysis. Hohhot and Ulaan Chab have very low s0DH signals.

Interestingly, these two sub-provinces showed the strongest

correlation between yearly rainfall and average s0DH (Figure S15).

This would therefore indicate that at a finer spatial scale, the ef-

fects of rainfall and urban expansion can become a large source

of signal in the QuikSCAT data, while the SIF data are not sensi-

tive to these issues.

Effects of Rainfall
Besides an increase in forest cover due to reforestation, the

observed increase in vegetation signal might also be due to

favorable growing conditions for plants, in particular an in-

crease in rainfall. Based on monthly rainfall satellite data from

the Tropical Rainfall Measuring Mission (TRMM), we found



Figure 3. Maps of the Slope (dB/Year) of the

Best Linear Fit of the Evolution of QuikSCAT

s0 between 2000 and 2009

A and D refer to the direction of the satellite during

the overpass (ascending or descending) and

correspond to different overpass times: ~6 AM, and

~6PM, respectively. V andH refer to the polarization

(vertical or horizontal). An increase (decrease) in s0

corresponds to an increase (decrease) in vegetation

water content that is likely due to an increase

(decrease) in vegetation cover. See also Figure S4.
that most of the TNSP area experienced an increase in annual

rainfall between 2000 and 2014 (Figure S10). When compared

with SIF (Figure 7), we found a positive but non-significant cor-

relation (R2 = 0.10, p = 0.09) between the evolution of rainfall

over the 2000–2014 period and that of SIF retrievals. In semi-

arid ecosystems such as our study region, SIF is expected to

be positively correlated with rainfall amount because an in-

crease in soil water content contributes to enhanced photosyn-

thetic activity in temperate and dry ecosystems.59 However,

here the lack of significance suggests that the enhanced vege-

tation productivity indicated by the positive trend in SIF is

driven by a mechanism other than rainfall, likely reforestation

efforts. A similar correlation was found when comparing

TRMM with s0 (Figure S11A, R2 = 0.18, p = 0.03). We also

compared the slope of the linear regression of the temporal

evolution (example in Figure S4) of SIF retrievals and TRMM

over latitudinal bands between 30�N and 50�N (corresponding

to the area of the TNSP). We found no correlation for the latitu-

dinal bands (see Figure S11B, p = 0.59), confirming that the cor-

relation found in Figure 7 was not due to our latitude-dependent

correction of the Metop-A data (see section on Solar-Induced

Chlorophyll Fluorescence). Finally, we looked at the yearly

averaged SIF and s0DH signals compared with the mean annual

precipitation (Figures S12 and S13 for the TNSP provinces, and

Figures S14 and S15 for the sub-provinces of Inner Mongolia).

We found that only a few provinces and sub-provinces had a

significant correlation between the satellite signal and rainfall

amount. This shows that while there is indeed an effect of rain-

fall on the satellite signal, this effect is limited and cannot ac-

count for the integrity of the observed increase in vegetation

water content and photosynthetic activity.

Comparison with Optical Remote Sensing Methods
In order to understand what the added value is of SIF and

QuikSCAT data over more commonly used optical remote

sensing analysis, we looked at the correlation between official

planting data and MODIS EVI,53 an optical/near-infrared (NIR)

remote sensing product that quantifies the ‘‘greenness’’ of the

surface and is frequently used for land cover change studies.60

We find that EVI correlates strongly with active reforestation

(Figure S16, R2 = 0.66, p < 0.0001) but has a weaker correlation
with natural reforestation (R2 = 0.45, p <

0.001), indicating that vegetation indices

such as EVI are a useful tool to study

dense vegetation, as might be the case
for active reforestation, but are not as well suited to track the

growth of low-greenness vegetation, such as that found in

drylands.

DISCUSSION

Implications for Reforestation Efforts in China
Our results show a strong, positive correlation between the

extent of the reforested areas and both photosynthetic activity

from SIF and canopy water from active microwave remote

sensing. The positive trend found in all three datasets indicates

that even though the survival rate of trees in reforested areas in

the TNSP area is low,27 there is still a positive effect of reforesta-

tion on vegetation activity and wet biomass in the area. In partic-

ular, the simultaneous increase in signals captured by GOME-2

and QuikSCAT strongly suggests that vegetation biomass is

indeed increasing and that using reforestation as a way to in-

crease ecosystem productivity and decrease desert progression

is working. This is especially important because China listed an

increase in forest stock as a method to reduce its carbon foot-

print in its Nationally Determined Contribution (NDC)61 to the

Paris Agreement in 2015. It specifically stated as a goal:62 ‘‘To in-

crease the volume of forest stock by approximately 4.5 billion cu-

bic meters over 2005 levels.’’

Here, we showed that dryland reforestation is associated with

strong increases in photosynthetic activity (Figure 5) that is itself

linked to carbon storage49 and supports China’s claim that refor-

estation, even in drylands, could potentially be an effective car-

bon-capture method. Interestingly, we found that afforestation

efforts were more successful in the slightly wetter eastern part

of the TNSP domain, underscoring the difficulty of long-term

afforestation efforts in arid and semi-arid regions, making the

need for a reliable, regular monitoring method all the more

important.

The increase in vegetation productivity andmoisture observed

from SIF and QuikSCAT, respectively, may however not be

directly correlated with an increase in carbon storage, because

vegetation respiration and decomposition of soil organic matter

are also changing and might be releasing more CO2 than the

vegetation is taking up. In order to quantify the carbon capture

from reforestation for the purpose of meeting China’s NDC,
One Earth 2, 98–108, January 24, 2020 101



Figure 4. Pixel to Pixel Comparison of SIF and s0 for 2009

Markers are color-coded by land use type from MODIS. Similar figures for

2007 and 2008 are available in the Supplemental Information (Figure S9).
further analysis will be needed. Calibration of SIF retrievals to

provide estimates of the amount of CO2 absorbed by vegetation

are slowly becoming available,63 but SIF signals from dryland

ecosystems are understudied, and it is unclear how the retrieved

SIF value is quantitatively related to gross carbon uptake for

these landscapes. Moreover, the regional net carbon balance

would need to be inferred from other data sources, such as

remotely sensed atmospheric CO2 concentrations.
64

The effect of environmental drivers, in particular rain, cannot

be completely untangled from the anthropogenic effects of refor-

estation on vegetation activity. It might be especially difficult to

separate the two, because wetter areas appear to be more

extensively planted. For example, in Inner Mongolia, Alxa is the

sub-province with the lowest average rainfall (112 mm/year)

and the smallest percentage of reforested area (Figure 6), while

Hohhot has one of the highest mean annual precipitation in Inner

Mongolia (418 mm/year) and also one of the highest rates of

reforestation. However, despite this limitation, the link between

observed vegetation activity and reforestation (Figures 5 and 6)

is stronger than the one observed between vegetation activity

and rainfall (Figure 7), indicating that reforestation is likely the

driving force behind the increase in vegetation productivity and

moisture seen from satellites.
Implications for Reforestation Strategies
We expected to find that natural reforestation was more suc-

cessful than active reforestation, because the method is better

adapted to colonizing difficult ecosystems. However, despite
102 One Earth 2, 98–108, January 24, 2020
doubts about artificial planting, our results indicate that both nat-

ural and active reforestation are correlated with increased

productivity and increased moist biomass. This is a surprising

result, because traditional (active) afforestation efforts in dry-

lands have often been highlighted as a large-scale failure.27,28,37

One possible explanation for the comparable success of active

and natural reforestation is that naturally reforested areas have

a slower growth rate than other methods, which leads to a

smaller satellite signal. We attempted to take this issue into ac-

count in our analysis (see Experimental Procedures), but there

is likely still a bias in favor of fast growing, active reforestation

methods. In addition, our analysis started when airplane planting

was already being phased out by most provinces. Airplane

planting is the planting strategy with the lowest level of commu-

nity engagement,65 usually leading to a low rate of germination

and survival.38,66 This is in part the reason for the failure of the

early phases of the TNSP that relied more heavily on airplane

planting. Natural reforestation is encouraged by providing

farmers with subsidies or non-agricultural employment opportu-

nities outside the region. Only the analysis of a longer time series

and fine-scale planting data can improve the comparison be-

tween the different reforestation methods.

Overall, our results are encouraging for natural reforestation

efforts. We found that closing land and allowing natural refores-

tation to recolonize an area is indeed leading to an increase in

vegetation cover and activity (Figures 5, 6, and S7). This is espe-

cially important because the biodiversity and ecosystem ser-

vices are much higher for natural reforestation than for planted

forests.38,67 This study is the first time that natural reforestation

in China’s dryland areas has been clearly identified as being an

effective reforestation method that should be encouraged.

There is currently no automatic feedbackmechanism between

the Chinese State Forest Administration and the scientific com-

munity that would allow research progress to be automatically

incorporated into future reforestation strategies. However, the

State Forest Administration technical committee does include

many scientists from the community and is regularly consulted

before each new phase of the TNSP. In the past decade, the shift

toward environmentally adapted reforestation strategies has

been accelerating, driven by a series of studies demonstrating

the need for better practices.68 This is true of the planting

method (active versus natural) but also of the species choice.

Indeed, the planting data used for this study did not differentiate

between different species used for manual planting. However,

themanual planting of native shrubs is expected to have a higher

success rate than the manual planting of poplars, for example.69

This shift in species started to occur about a decade ago,70 and

the higher survival rate of native species is just starting to

become apparent.

Future Directions for Reforestation Policy Evaluation

Both QuikSCAT and SIF data products are more sensitive to nat-

ural reforestation than EVI, likely because natural reforestation

tends to have low greenness that is difficult to capture with opti-

cal/NIR remote sensing. This indicates that these new types of

data have the potential to provide new information regarding

dryland reforestation.

The QuikSCAT mission ended in 2009 after a mechanical

failure. Other missions have since been launched, such as the

Oceansat-2 Scatterometer (OSCAT, ceased to function in



Figure 5. Correlation between Reforestation

and Remote Sensing Signal for the TNSP

Provinces

Average SIF (top) and s0DH (bottom) slope over the

period of the satellite data for each province as a

function of the percentage of the province refor-

ested by land closure (left) and active reforestation

(right). Lines show the best linear regression in each

case. Note that the time intervals for SIF and s0 are

different but overlap.
2014)71 launched by the India Space Research Organization in

2009 or the Haiyang-2A (HY-2A) satellite launched in 2011.72

Finally, ScatSAT was launched in 2016 to replace OSCAT and

has already demonstrated its sensitivity to vegetation pro-

cesses.73 Since QuikSCAT’s failure, these satellites, properly

cross-calibrated, have provided a nearly continuous dataset that

can be used for near-real-time monitoring of reforestation in dry-

lands, as well as to elucidate longer-term trends. However, the

sensitivity of this type of data to both urban growth and soil mois-

ture means that it should be used with caution, especially at fine

spatial scale, when the proportion of these effectsmight be large.

New and improved remotely sensed SIF data recently became

available through theTROPOsphericMonitoring Instrument (TRO-

POMI) launched in October 201774 and from TanSat, launched in

December 2016.75 With its global coverage at 7 km 3 3.5 km

pixels with daily revisit, TROPOMI’s temporal and spatial resolu-

tions are much better than other remotely sensed SIF datasets.

In addition, the FLuorescence EXplorer (FLEX) mission76 will be

launched by the European Space Agency in 2022. While SIF

was only a side product of the GOME-2 and TROPOMI missions,

FLEXwas designed with the specific purpose of getting high-res-

olution SIF data (spatial resolution, 0.09 km2). Combined with

emerging models linking SIF retrievals with CO2 assimilation63

and a careful cross-calibration with in situ measurements, such

as tower-mounted PhotoSpec instruments,77 SIF can provide a

metric to monitor reforestation efforts not only in China but also

in other crucial regions that are expected to undergo desertifica-

tion, including the Sahel.78 Unlike China’s Green Great Wall (as

the TNSP is often called in themedia), which is thework of a single

government, Africa’s Great Green Wall project brings together

more than 20 countries from Sub-Saharan Africa with widely

different resources. For the project to succeed, a country-inde-

pendent method to measure progress will be crucial to hold the

different governments accountable.79,80 By providing globally
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consistent measurement of dryland vege-

tation growth, the combination of SIF and

active microwave remote sensing will be

an excellent method for this purpose.

Conclusion
In this study, we presented two indepen-

dent types of remote sensing data that

offer new insight on reforestation efforts

in drylands: microwave remote sensing

backscatter provides information on the

water status of plants and soil, and SIF is

an indirect measure of photosynthesis,

which can be used to indicate successful
rest regrowth. Looking at the Three-North Shelterbelt Project

Northern China, both techniques show a strong correlation

th reforestation data from the Chinese government’s Year-

oks, which provide information on the land area reforested us-

various strategies, but not on the actual effectiveness of the

forestation efforts. We found that, like active reforestation, nat-

al reforestation, i.e., the closing of land to allow natural refores-

tion to recolonize an area, is strongly correlated with an in-

ease in landscape photosynthesis and vegetation biomass,

intended. This is an important result because natural refores-

tion hasmany long-term benefits to the ecosystems that active

forestation might not provide. Future SIF and microwave mis-

ns might be able to monitor the success rate of reforestation

forts in drylands in China as well as other areas in the world, for

ample, the Sahel, where Africa’s Great Green Wall is bringing

gether over 20 countries in the fight against desertification.

PERIMENTAL PROCEDURES

forestation Strategies in China

ormation on past and current legislation regarding forests in China was ob-

ned from two official sources: (1) the official website of the State Forestry

ministration of the People’s Republic of China (http://english.forestry.gov.

/index.php) and (2) the FAOLEX Database (http://www.fao.org/faolex/en/),

atabase developed by the Food and Agriculture Organization of the United

tions and one of the world’s largest electronic collections of national

s, regulations, and policies on food, agriculture, and natural resources

nagement.

The Forest Law of the People’s Republic of China, adopted in 1984 and

ended in 1998, dedicates Chapter IV to afforestation and states that: ‘‘The

ople’s governments at various levels shall work out afforestation plans and,

light of the specific local conditions, set forth targets for increasing the forest

verage of their own areas. People’s governments at various levels shall mobi-

people of all walks of life and urban and rural inhabitants to fulfill the tasks as-

ned in the afforestation plans.’’ In 2001, the Law of the People’s Republic of
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Figure 6. Correlation between Reforestation

and Remote Sensing Signal for Inner Mongo-

lia’s Sub-provinces

Average SIF (top) and s0DH (bottom) slope over the

period of the satellite data for each sub-province in

Inner Mongolia as a function of the percentage of

the province reforested by land closure (left) and

active reforestation (right). Lines show the best

linear regression in each case. Note that the time

intervals for SIF and s0 are different.
ChinaonPrevention andControl ofDesertificationwas adopted to ‘‘prevent land

desertification, to transform desertified land, to protect the safety of environ-

ment, and to promote the sustainable development of economy and society.’’

Finally, China included reforestation as a way to decrease its carbon emissions

in itsNDCat the 2015UnitedNationsClimateChangeConference inParis.62 The

TNSP, initiated in 1978, is one of the oldest and is the most extensive reforesta-

tion project undertaken by the Chinese government. The TNSP spreads across

13 provinces and autonomous regions in Northern China (Figure S1): Heilong-

jiang, Jilin, Liaoning,Hebei, Shanxi,Shaanxi,Gansu,Qinghai, TianjinCity,Beijing

City, InnerMongolia, Ningxia, and Xinjiang.23Here, we set out to investigate how

successful efforts at TNSP reforestationhavebeenbycomparingofficial refores-

tation data reported by the provinces with satellite data.

Reforestation data were obtained using provincial district (provinces or

autonomous regions) Yearbooks obtained via the China Statistics Database,

Soshoo (http://english.soshoo.com/enindex.do), accessed through the Uni-

versity of Michigan. The search included district names with the words:

‘‘land use,’’ ‘‘afforestation,’’ or ‘‘forest.’’ The level of detail of the available

data varied between districts. Yearly afforestation data were only available

at the province level. The data used here are available as a separate spread-

sheet (Table S3) in the Supplemental Information, and a summary of the avail-

able data is presented in Table S2. Detailed information on yearly afforestation

efforts at the sub-province level was available only for Inner Mongolia (2006–

2010), Liaoning (2000 and 2006–2010), Qinghai (2003–2007), and Xinjiang

(2005–2010), but because the four provinces did not provide the same type

of information for their sub-provinces, it was not possible to use the data to

compare sub-province level patterns. However, since Inner Mongolia is the

leader of reforestation efforts within the TNSP (7 million hectares reforested

between 2003 and 2015, more than double the area reforested by the second

most reforested province), we used the reforestation data from Inner Mongolia

as a case study for finer scale data.

Of the 13 provinces included in the Three-North Shelterbelt Project, 12

included ‘‘closure of land’’ for natural reforestation purposes as an afforestation

method deployed starting in 2007. For example, the amount of new land closed

each year in Xinjiang Province doubled within 4 years. Other reforestation

methods included manual and airplane planting (see Table S3 in the Supple-

mental Information). In 2015, two new categories of reforestation methods

were introduced in the Yearbooks: ‘‘artificial regeneration’’ and ‘‘restoration of

degraded forest.’’ Since 2015 was beyond the time frame of the other datasets

we had (see Table S1), we did not consider these two categories separately in

our analysis. Tianjin City was excluded from the following analysis because it
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did not implement any natural reforestation over

the period of this study. Data from Inner Mongolia

separate afforestation data as ‘‘artificial’’ (manual)

planting, ‘‘airplane’’ planting, and ‘‘land closure’’

(natural reforestation). Data extracted from the Year-

books are available in Table S3 in the Supplemental

Information.

Microwave Remote Sensing

Active microwave remote sensing provides a proxy

for the water content of the surface off which a

pulsed microwave signal is backscattered (i.e., re-

flected) to a detector on board the satellite. For mi-

crowave backscattering instruments, the signal

analyzed is the backscattering cross-section, s0,
defined as

s0 = 10log10

�
power detected

power of the source

�
; (Equation 1)

where the power detected is the power scattered back to the satellite by the

planet’s surface.

Here, we use the backscattering cross-section s0 of the SeaWinds scatter-

ometer. Launched in 1999 aboard the QuikSCAT satellite, SeaWinds (13.4

GHz, Ku-band, sun-synchronous orbit) has overpass times of 6:00AM

(ascending direction, the satellite travels toward the North Pole) and 6:00PM

(descending direction, the satellite travels toward the South Pole) around the

Equator.81 QuikSCAT data processed by the NASA Scatterometer Climate Re-

cord Pathfinder at Brigham Young University (BYU) offers global coverage

every 4 days with a spatial resolution of 4.5 3 4.5 km. The instrument has

two beams with different polarizations. In the HH polarization, the electric field

vector is perpendicular to the plane of incidence, whereas in the VV polariza-

tion, the electric field vector lies in the plane of incidence. The beams in the VV

and HH polarizations have incidence angles of 55� and 46�, respectively.81

Four separate datasets therefore exist for s0 from QuikSCAT corresponding

to the two overpass times and the two polarizations. In the following, these

four datasets are referred to as AV, AH, DV, and DH, where the first letter refers

to the direction of the overpass (ascending or descending) and the second let-

ter to the polarization (vertical or horizontal). Because vegetation can be rep-

resented as a cloud of randomly oriented leaves, we do not expect any signif-

icant difference between the four datasets.

Because of its high dielectric constant, water interacts strongly with micro-

waves.82 For this reason, microwave remote sensing is highly sensitive to sur-

face water content, such as soil moisture or plant internal water,82,83 and at

high frequency (approx. 5 GHz and above), can measure changes in total can-

opy water.55,84–86 In particular, at QuikSCAT’s operating frequency, s0 is espe-

cially sensitive to the presence of water within the leaves86,87 and is considered

a measure a total vegetation biomass.55,88

Data are available on the BYU Microwave Earth Remote Sensing Labora-

tory website48 (http://www.mers.byu.edu/). Although the dataset is available

from 1999 to 2009, data for 1999 does not encompass a full annual cycle,

which might create biases when looking at yearly averages. 2009 is missing

the month of December due to instrument failure at the end of November

2009. However, since December is outside the growing season (see

http://english.soshoo.com/enindex.do
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Figure 7. Evolution of SIF and Rainfall

Average slope of the linear regression of the temporal evolution (example in

Figure S4) of SIF retrievals for each province as a function of the average slope

of the linear regression of the temporal evolution of yearly rainfall from TRMM.

The black line shows the best linear regression (R2 = 0.10, p = 0.09).
Figure S5), we decided to include 2009 in our analysis and used the years

2000–2009.

Effect of Urban Growth on the Backscatter Signal

Because of the geometry (corner effect) and the construction material of tall

buildings, cities and built-up areas have a very strong signal in microwave

backscattering.58 The signal for these areas is much stronger than the signal

from natural surfaces. Over the time frame of the QuikSCAT data (2000–

2009), China experienced strong urban growth throughout the country.58,89

To ensure that the signal we analyzed was not affected by changes from nat-

ural to urban land cover, we removed pixels from urban areas. To do so, we

used the backscatter data from 2008, the last year of our dataset, and the

year at which urban extent was the largest. We chose a threshold of s0 = �8

dB as our cutoff, because this is the maximum backscatter signal that has

been found for vegetation.90 The resulting mask is presented in Figure S6

and shows that cities are being effectively masked. In addition, snow-covered

areas in the far western part of the TNSP were also masked by this threshold.

However, these areas are not being reforested and can therefore be ignored

for our purposes.

Solar-Induced Chlorophyll Fluorescence

SIF provides a complementary proxy for vegetation productivity. SIF describes

the naturally occurring photon emission by chlorophyll molecules when they

drop from an excited to a non-excited state.49 When a solar photon is ab-

sorbed by vegetation chlorophyll, the energy can either be quenched via

photochemistry (i.e., photosynthesis) or by re-emission as heat or fluores-

cence at a red-shifted frequency compared with that of the photon absorbed.

Empirically, the dominant pathway for non-photochemical quenching is radia-

tion as heat, meaning that photosynthesis and fluorescence scale with each

other, rather than being anti-correlated.91While SIF is a broad spectral feature,

its influence on infilling narrow spectral features, such as oxygen lines or solar

Fraunhofer lines, can be inferred from satellite observations.50 SIF has been

shown to be strongly correlated to other classic vegetation measurements

such as satellite enhanced vegetation index55 or gross primary productivity

measured by flux towers.92

For this study, we used the monthly SIF data from the Global Ozone Moni-

toring Experiment 2 (GOME-2) instrument aboard the Metop-A satellite.93 In

particular, we chose to use the Level 3, gridded SIF data with a spatial resolu-

tion of 0.5� 3 0.5� and referenced to 740 nm from the v2.7 processing,94 which

has improved bias corrections and calibration compared with previous ver-

sions. Data from Metop-A was chosen over Metop-B since the former was

launched in 2012, whereas Metop-A has been available since 2007. The

monthly data were aggregated to yearly level since reforestation data are

only available yearly.
Metop-A Temporal Degradation

The GOME-2 instrument aboard Metop-A experienced a degradation in signal

in the early years of its operation.95 This is apparent in the latitudinal average of

the SIF retrieval, r, calculated as

rlat =

Z 180

�180

SIFlat d lon; (Equation 2)

where SIFlat is the SIF measurement at a given latitudinal band. The latitudinal

average is expected to stay stable with time. However, when compared with

r at year 1 of GOME-2’s operation, there is a strong drop in signal intensity (Fig-

ure S3). This temporal degradation in the signal has been pointed out before,95

and the interpretation of the Metop-A SIF temporal evolution is not recommen-

ded.96 However, this issue does not affect comparisons of SIF time series be-

tween two different locations (J. Joiner, personal communication). In the

following, the SIF data are corrected by multiplying each grid cell by the

r1lat=r
n
lat coefficient for the corresponding latitude and year n of the grid cell.
Vegetation Index

We use the MODIS EVI to understand the added value of microwave and SIF

remote sensing data over classic ‘‘greenness’’ indices used in previous

studies.9,30,32 Here, we use themonthly MODIS EVI at 0.05� 3 0.05� resolution
(Product MOD13C2, v.6) available online on NASA’s website (https://modis.

gsfc.nasa.gov/data/dataprod/mod13.php).
Precipitation and Land Use Type

We analyzed precipitation and land cover data to examine whether trends in

the remote sensing data could be due to ancillary factors unrelated to affores-

tation efforts. For rainfall data, we used the TRMMmonthly rainfall estimate L3

V7 with a spatial resolution of 0.25� 3 0.25� (TMPA/3B43). The precipitation

data are given as the average rainfall rate in millimeters/hour from which we

calculated total monthly rainfall, and finally yearly total rainfall. We used data

from 2000 to 2014, at which point issues with the spacecraft battery arose,

eventually leading to instrument failure in 2015. One of the limitations of

TRMM is that its spatial range only extends to 50�N, therefore excluding a

small part of Inner Mongolia and Heilongjiang.

We use the Global Mosaics of the standard MODIS land cover type data

product (MCD12Q1) to determine and compare the SIF andmicrowave signals

from different land cover types. This dataset has two spatial resolutions, 0.5�

3 0.5� and 5 3 5 min, and was downloaded from the website of the Global

Land Cover Facility of the University of Maryland. Land surfaces are divided

into the following 17 categories: water bodies, evergreen needleleaf forests,

evergreen broadleaf forests, deciduous needleleaf forests, deciduous broad-

leaf forests, mixed forests, closed shrublands, open shrublands, woody sa-

vannas, savannas, grasslands, permanent wetlands, croplands, urban and

built-up lands, cropland/natural vegetation mosaics, snow/ice, and barren.

For simplicity, we use a single year of data, 2012, the most recent data avail-

able. The 0.5� 3 0.5� resolution dataset was used to analyze SIF data, and the

high-resolution version was used to analyze QuikSCAT and EVI data.
Data Analysis

One complication for our study was that the datasets assembled for our anal-

ysis cover different (but overlapping) time periods (see Table S1). Here, we

analyzed the temporal evolution of each pixel by calculating the linear regres-

sion of each remote sensing dataset (Figure S4) and comparing the slope of

each of these. The data were then averaged for each province to match the

spatial resolution of the reforestation data. When comparing different remote

sensing products, the data were put onto the SIF data grid because it was

the dataset with the coarsest resolution.

Agricultural Intensification

Since the early 1990s, the north-east of the TNSP area has been experiencing

significant agricultural intensification.97 Higher agricultural productivity should

lead to an increase in both SIF and microwave signals and could bias our re-

sults. To remove any potential signal related to agricultural intensification, we

masked out pixels identified as cropland in theMODIS land cover product from

our analysis of SIF, QuikSCAT, and EVI data.
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DATA AND CODE AVAILABILITY

The datasets analyzed in this study are publicly available as referenced within

the article. Table S3, provided as a separate Excel file, summarizes the Year-

book data used in the study.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

oneear.2019.12.015.
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Dataset Source Years used Spatial resolution

Afforestation data (China) China Statistics Database 2003–2015 Province level

Afforestation data (Inner Mongolia) China Statistics Database 2006–2010 Sub-province level

σ0 (canopy moisture) QuikSCAT 2000–2009 4.5 × 4.5 km

SIF (photosynthetic activity) GOME-2 2007–2017 0.5o × 0.5o

Rainfall TRMM 2000–2014 0.25o × 0.25o

EVI (vegetation index) MODIS 2000–2013 0.05o × 0.05o

Land cover type MODIS 2012 0.5o × 0.5o

Land cover type MODIS 2012 5’ × 5’

Table S1: Summary of the different datasets used for this study with their temporal range and spatial resolution.
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Total area (km2) Type of data available Spatial scale Years of data available

Beijing City 16,411 Afforestation area by method and forest function Province 2003-2015

Gansu 454,430 Afforestation area by method and forest function Province 2003-2015

Hebei 187,700 Afforestation area by method and forest function Province 2003-2015

Heilongjiang 454,800 Afforestation area by method and forest function Province 2003-2015

Inner Mongolia 1,183,000 Afforestation area by method Sub-province 2006-2010

Afforestation area by method and forest function Province 2003-2015

Jilin 191,126 Afforestation area by method and forest function Province 2003-2015

Liaoning 145,900 Afforestation area by forest function Sub-province 2000, 2006-2010

Afforestation area by method and forest function Province 2003-2015

Ningxia 66,399 Afforestation area by method and forest function Province 2003-2015

Qinghai 720,000 Afforestation area by forest function Sub-province 2003-2007

Afforestation area by method and forest function Province 2003-2015

Shaanxi 205,800 Afforestation area by method and forest function Province 2003-2015

Shanxi 156,000 Afforestation area by method and forest function Province 2003-2015

Tianjin City 11,760 Afforestation area by method and forest function Province 2003-2015

Xinjiang 1,664,897 Afforestation area by method and forest function Sub-province 2005-2010

Afforestation area by method and forest function Province 2003-2015

Table S2: Available information on reforestation from the yearbooks for each of the 13 provinces and autonomous regions included within

the Three-North Shelterbelt Project Area.

Table S3: Excel table (available in a separate file) summarizing the province-level afforestation data available in the Yearbooks

from 2003 to 2015. Blue columns are the 13 provinces and autonomous regions that are included in the Three-North Shelterbelt

Project. The second tab presents sub-province level reforestation data for Inner Mongolia from 2006 to 2010.
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Figure S1: Map of China showing in red the 13 provinces involved in the Three-North Shelterbelt Project (TNSP): Heilongjiang, Jilin,

Liaoning, Hebei, Shanxi, Shaanxi, Gansu, Qinghai, Tianjin City, Beijing City, Inner Mongolia, Ningxia, and Xinjiang. All other

figures only show the TNSP area.

Figure S2: Bird’s eye view (RGB composite image) of a natural reforestation site in Inner Mongolia (42°57’N, 115°57’E) captured by drone .

The image was captured in May, at the beginning at the growing season. Although fully grown oak trees are present in the image,

their small leaves and thin canopy does not lead to identifiable "greenness" that could be captured by optical remote sensing.
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Figure S3: Latitudinal average throughout GOME-2 lifetime compared to the latitudinal average at Year 1 for two different latitudinal bands.

Grey bands show the standard deviation. Here we show the latitudinal average at the Equator between -5 and 5oN (solid line,

dark grey band) and between 30 and 40oN, the range of the TNSP area (dashed line, light grey band).
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Figure S4: Temporal evolution of a single SIF pixel within the TNSP area after correction for the latitudinally averaged degradation. The

dotted line represents the linear regression. In this specific case, the slope of the linear regression is 0.026 with an R2 of 0.54.
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Figure S5: Monthly average of the backscatter from QuikSCAT (top), the SIF retrievals (center), and the precipitation from TRMM (bottom),

averaged for the whole TNSP area over their respective range of operation (see Table S1). Grey bands show the standard

deviation.
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Figure S6: Mask of σ0 in the TNSP area in which cities have been masked using a -8 dB threshold and are shown in red. The thresholding

also masks snow-covered areas in the far west of the study zone, but these areas are not being reforested and can therefore be

ignored here.
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Figure S7: Average slopes for σ0
DV (top), σ0

AV (center), and σ0
AH (bottom) for each province as a function of the percentage of the province

reforested by 1) land closure (left), 2) active reforestation (right). Lines show the best linear regression in each case. Land

closure: R2 = 0.66, R2 = 0.73, R2 = 0.70, all with p < 0.001 for σ0
DV, σ

0
AV, and σ

0
AH, respectively. Active reforestation: R

2 =

0.49, R2 = 0.54, R2 = 0.45, all with p < 0.001. Note that Beijing city was removed from the analysis because of the very high σ0

likely due to the limited amount of non-urban area and the strong effect of urban development on QuikSCAT data.
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Figure S8: Average slopes for σ0
DV (top), σ0

AV (center), and σ0
AH (bottom) for each sub-province of Inner Mongolia as a function of the

percentage of the sub-province reforested by 1) land closure (left), 2) active reforestation (right). Lines show the best linear

regression in each case. Land closure: R2 = 0.090, p = 0.1 ; R2 = 0.08, p = 0.14 ; R2 = 0.12, p = 0.07 for σ0
DV, σ

0
AV, and σ

0
AH,

respectively. Active reforestation: R2 = 0.12, p = 0.07 ; R2 = 0.12, p = 0.07 ; R2 = 0.13, p = 0.06.

7



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
SIF retrieval

(mW m�2 nm�1 sr�1)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

s
0 A

H
(d

B
)

2007

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
SIF retrieval

(mW m�2 nm�1 sr�1)

2008

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
SIF retrieval

(mW m�2 nm�1 sr�1)

2009

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
2007 SIF retrieval (mW m�2 nm�1 sr�1)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

20
07

s
0

(d
B

) Barren
Low vegetation
Forest
Cropland

D
H

Figure S9: Pixel to pixel comparison of SIF and σ0 for the years 2007 and 2008 with markers color-coded by land use

type from MODIS. Figure 4 presents a similar figure for the year 2009.
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Figure S10: Map of the slope (mm/year) for the best linear fit of the evolution of rainfall retrievals from TRMM between

2000 and 2014 over the TNSP area.
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Figure S11: Left: Average σ0
DH slope for each province as a function of average rainfall coefficient. Right: Average

SIF slope for latitudinal bands between 50oN and 30oN as a function of average rainfall coefficient. No

significant correlation is found.
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Figure S12: Yearly average SIF signal as a function of yearly rainfall for each province in the TNSP. ‘*’ indicates a

significant correlation.
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Figure S13: Yearly average σ0DH signal as a function of yearly rainfall for each province in the TNSP. ‘*’ indicates a

significant correlation.
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Figure S14: Yearly average SIF signal as a function of yearly rainfall for each sub-province in Inner Mongolia. ‘*’

indicates a significant correlation.
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Figure S15: Yearly average σ0DH signal as a function of yearly rainfall for each sub-province in Inner Mongolia. ‘*’

indicates a significant correlation.
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Figure S16: Average slopes of EVI for each province as a function of the percentage of the province reforested by 1)

land closure (left), 2) active reforestation (right). Lines show the best linear regression in each case. Land

closure: R2 = 0.45. Active reforestation: R2 = 0.66, all with p < 0.001.
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