Global health benefits of mitigating ozone pollution with methane emission controls

J. Jason West*^{†‡}, Arlene M. Fiore[§], Larry W. Horowitz[§], and Denise L. Mauzerall*[†]1

*Department of Geosciences and Atmospheric and Oceanic Sciences Program, Princeton University, Sayre Hall, Princeton, NJ 08544; [†]Woodrow Wilson School of Public and International Affairs, Princeton University, Robertson Hall, Princeton, NJ 08544; and [§]Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, 201 Forrestal Road, Princeton, NJ 08542

Communicated by James E. Hansen, Goddard Institute for Space Studies, New York, NY, January 11, 2006 (received for review September 6, 2005)

Methane (CH₄) contributes to the growing global background concentration of tropospheric ozone (O₃), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by ≈1 part per billion by volume globally. By using epidemiologic ozonemortality relationships, this ozone reduction is estimated to prevent \approx 30,000 premature all-cause mortalities globally in 2030, and \approx 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, \approx 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be \approx \$420,000 per avoided mortality. If avoided mortalities are valued at \$1 million each, the benefit is \approx \$240 per tonne of CH₄ (\approx \$12 per tonne of CO₂ equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO2. Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.

human health | mortality | tropospheric ozone | air quality

Tropospheric ozone (O₃) is an oxidant that damages agriculture, ecosystems, and materials. Ozone also adversely affects human health and has been associated in epidemiologic studies with daily premature mortality (1–10). Surface O₃ concentrations have historically increased in both polluted and remote regions and now frequently exceed regulatory standards (11–14). Global background surface O₃ concentrations have roughly doubled since preindustrial times (15), primarily because of increases in anthropogenic emissions of nitrogen oxides (NO_x) and methane (CH₄) (16), and are projected to continue to increase (17, 18).

Tropospheric O_3 is formed from photochemical reactions involving NO_x and volatile organic compounds (VOCs). Although nonmethane VOCs are the dominant anthropogenic VOCs contributing to O_3 formation in polluted regions, CH₄ is the primary anthropogenic VOC in the global troposphere (19). Because CH₄ reacts slowly (lifetime of 8–9 yr), it affects global background concentrations of O_3 . Because this background underlies the O_3 produced on urban and regional scales, CH₄ mitigation reduces O_3 concentrations by roughly the same amount in polluted regions as in rural regions (19, 20).

Methane and O_3 are also greenhouse gases, which rank behind only carbon dioxide (CO₂) in anthropogenic radiative forcing of climate (21). Consequently, abatement of CH_4 emissions both reduces surface O_3 concentrations everywhere and slows greenhouse warming (19, 20). Methane abatement has been considered a low-cost means of addressing climate change (22, 23), particularly to influence the short-term rate of climate change. However, CH_4 abatement has not been considered for air quality management, mainly because O_3 pollution has traditionally been considered a local and regional problem, and the local benefits of local CH_4 reductions are small.

Here we examine the global reduction in O_3 and consequent decrease in premature human mortalities resulting from CH₄ emission controls. We first estimate the global decrease in surface O_3 concentration due to CH₄ mitigation, using the MOZART-2 global three-dimensional tropospheric chemistrytransport model (24, 25). This spatial distribution of O_3 is then overlaid on projections of population, and avoided premature mortalities are estimated by using daily O_3 -mortality relationships from epidemiologic studies (6–9). Results are presented as the number of avoided premature mortalities due to the CH₄ reduction, the marginal cost-effectiveness per avoided mortality (using the marginal cost of CH₄ mitigation), and the monetized benefit per tonne of CH₄ reduced [using a value of a statistical life (VSL)].

Response of Global Surface Ozone to Methane Mitigation

Methods. We consider a CH₄ emission reduction of 65 Mt·yr⁻¹ (1 Mt = 10⁹ kg) ($\approx 20\%$ of current global anthropogenic emissions), which is assumed to be immediate in 2010 and sustained relative to the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) A2 scenario (26) until 2030. A compilation of global CH₄ abatement options in five industrial sectors (27) suggests that 65 Mt·yr⁻¹ can be reduced by 2010 at a net cost savings, using identified abatement options.

The MOZART-2 simulations use uniform global mixing ratios of CH₄, and spatially and temporally distributed emissions of other O₃ precursors, as other studies have done (19, 28). We conduct four simulations with MOZART-2, as shown in Table 1. Simulations I and III use CH₄ mixing ratios and emissions of other O₃ precursors as specified for the Intergovernmental Panel on Climate Change AR-4 2000 and 2030 A2 atmospheric chemistry experiments (29). In the CH₄ reduction cases (simulations II and IV), the decreased CH₄ mixing ratios are the steady-state mixing ratios resulting from a 65 Mt·yr⁻¹ emission

Conflict of interest statement: No conflicts declared.

Abbreviations: CR, cardiovascular and respiratory; PM, particulate matter; ppbv, part(s) per billion by volume; VOC, volatile organic compound; VSL, value of a statistical life.

⁴To whom correspondence may be addressed at: Atmospheric and Oceanic Sciences Program and Woodrow Wilson School of Public and International Affairs, Princeton University, 409 Robertson Hall, Princeton, NJ 08544. E-mail: jwest@princeton.edu.

¹To whom correspondence may be addressed at: Woodrow Wilson School of Public and International Affairs, Princeton University, 406 Robertson Hall, Princeton, NJ 08544. E-mail: mauzeral@princeton.edu.

^{© 2006} by The National Academy of Sciences of the USA

Table 1. Four MOZART-2 simulations conducted in this study

	Fixed CH₄ mixing	Global anthropogenic NO _x emissions,
Simulation	ratio, ppbv	Mt•yr ⁻¹ as NO ₂
I: 2000 base case	1,760	124.8
II: 2000 CH ₄ reduction	1,460*	124.8
III: 2030 A2	2,163	212.7
IV: 2030 A2, CH ₄ reduction	1,865*	212.7

*Fixed global CH₄ mixing ratios at steady state, corresponding to an emission reduction of 65 Mt·yr⁻¹ of CH₄.

reduction versus the corresponding base cases (simulations I and III), assuming a CH₄ feedback factor of 1.4 (28). We do not consider any effects of changes in future climate on O₃ distributions in projecting to 2030 (30, 31), nor do we consider the decrease in global mean temperature due to CH₄ reductions, which could amplify the O₃ decrease that we estimate. MOZART-2 has a horizontal resolution of $\approx 1.9^{\circ}$ by 1.9° and 28 vertical levels. In all cases, we use meteorological fields from the National Centers for Environmental Prediction reanalysis (32), beginning in July 1998, with an 18-month initialization, before focusing on results for the meteorological year 2000.

Results. Between 2000 and 2030 (simulations I and III), we project the population-weighted global average 8-h daily maximum surface O_3 mixing ratio to increase by 12.3 parts per billion by volume (ppbv) (25%) (Table 2), primarily because of projected increases in anthropogenic emissions of NO_x (70%) and CH_4 (48%). The 65 Mt·yr⁻¹ CH_4 emission reduction decreases the steady-state population-weighted mean 8-h O₃ by 1.16 ppby (1.9%, Table 2). This sensitivity is in agreement with other models (18, 19, 28, 33), and these results together suggest that global surface O_3 responds fairly linearly to changes in CH_4 (33). Decreases in O₃ due to CH₄ reductions are widespread globally (Fig. 1), with the largest O₃ decreases occurring over the Middle East, North Africa, and Europe, because of greater down-welling from the free troposphere and greater availability of NO_x. This spatial pattern is similar to previous results (19, 20), suggesting that the pattern is independent of the extent of methane abatement. Methane controls initiated in 2010 will yield $\approx 81\%$ of this steady-state O₃ change by 2030, assuming exponential decay with a CH₄ perturbation lifetime of ≈ 12 yr (28).

Table 2. Global average O₃ mixing ratios (ppbv) in the 2000 and 2030 A2 base model runs (simulations I and III), and the steady-state change in O₃ due to a 65 Mt·yr⁻¹ reduction in CH₄ emissions, relative to the 2030 base (simulation IV minus simulation III)

Parameter	2000	2030 A2	ΔO ₃ 2030
24-h average	29.1	33.6	-0.82
8-h daily maximum	31.8	37.1	-0.87
8-h maximum population-weighted	49.4	61.7	-1.16

The steady-state change in O_3 when 65 Mt·yr⁻¹ are reduced relative to the 2000 base case (simulation II vs. simulation I) is virtually identical to the change in Table 2 (-1.11 ppbv for population-weighted 8-h O_3), indicating that the projected changes in nonmethane O_3 precursors between 2000 and 2030 have little effect on the O_3 sensitivity to CH₄. This insensitivity presumably reflects the fact that there is little change in hydroxyl radical (OH) concentrations, because of similar emission ratios of NO_x to (CO + VOCs) in 2000 and 2030 (16). Therefore, although the A2 scenario includes larger growth in emissions of O_3 precursors than other SRES scenarios, and larger than the "Current Legislation" scenario of Dentener *et al.* (18), this high growth does not strongly affect the O_3 -CH₄ sensitivity.

Indirect Effects of Methane Reductions on Particulate Matter (PM). Methane reductions also indirectly affect PM concentrations through complex oxidant chemistry. MOZART-2 (25) results suggest that CH₄ reductions cause a global net decrease in inorganic PM, because of decreases in hydrogen peroxide that in turn reduce sulfate production. Inorganic PM concentrations also increase at some locations, where the increased gas-phase oxidation (due to increased OH concentrations) dominates the change in sulfate production. Although the global average decrease is only $\approx 0.5\%$ of the inorganic PM (sulfate, nitrate, and associated ammonium), the decrease is concentrated in populated regions. Confidence in the change in PM is lower than for O₃ because of competing influences on inorganic PM.

Global Mortality Benefits of Reduced Ozone

Methods. Ozone has been associated in epidemiologic studies with adverse health effects including hospital admissions and

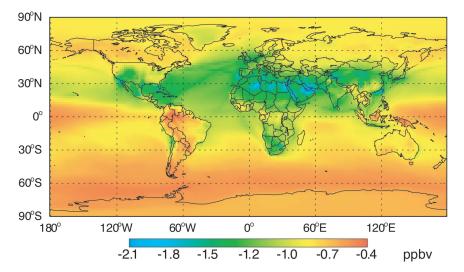


Fig. 1. Change in annual average daily maximum 8-h surface O₃ mixing ratios, at steady state, due to a 65 Mt·yr⁻¹ reduction in CH₄ emissions relative to the 2030 A2 base case (simulation IV minus III).

chronic respiratory conditions, and recent research provides strong evidence for an association with daily premature mortality (1–10). We use the daily O₃-mortality relationship (β) estimated by Bell et al. (6), using a distributed lag method for 95 cities in the United States, and apply this relationship globally. Because long-term effects of O3 on mortality have not been demonstrated (34), we do not consider possible chronic effects of O₃ or years of life lost due to premature mortality. Bell *et al.* (6) directly use a large data set, and therefore their results are not subject to publication bias, which can bias meta-analyses high. The β estimated by Bell *et al.* (6) with a single-day lag is much smaller than the β estimated in three recent meta-analyses (7–9). However, the β of Bell *et al.* (6) with the distributed lag method, used in this study, is much more comparable with the meta-analyses (7-9), which are 22-36% higher. We consider the sensitivity of our results to the uncertainties reported by Bell et al. (6) and the meta-analyses (7–9). Although Bell et al. (6) focus on the United States, similar results have been reported in North America and Europe (5, 7-9). Few studies of O₃ mortality have been conducted elsewhere, although some such studies suggest associations between O_3 and mortality in other regions (35–37).

Although Bell *et al.* (6) find similar relationships between ozone and mortality over all seasons in the United States, many studies find reduced O_3 impacts in winter, when O_3 concentrations are often lower (5, 8, 9). However, applying seasonal differences in tropical regions is not straightforward. Available studies also show adverse effects of O_3 below current standards, without identifying a clear threshold below which O_3 does not affect mortality (5, 6). Rather than imposing seasonally varying relationships, we assume a low-concentration threshold of 25 ppbv, approximately the preindustrial mixing ratio (13, 15), below which we neglect any effect of O_3 on mortality. We apply this threshold on each day, through all seasons, and consider the sensitivity of our results to the threshold used.

We apply β to the total nonaccident baseline mortality rates, using data for 14 world regions (38). Baseline mortality rates are applied uniformly within each region, and are assumed to be constant into the future. The spatial distribution of population is modeled consistently with the SRES A2 scenario, growing to 9.17 billion in 2030 (26).

Avoided premature mortalities are estimated daily in each model grid square, based on the maximum daily 8-h O_3 mixing ratio in the A2 base and CH₄ control cases. The A2 base and CH₄ control cases are constructed for the period 2000–2030 by interpolating between simulations I, III, and IV. For the A2 base case, 8-h O_3 mixing ratios on each day and in each grid square are interpolated between 2000 and 2030 (simulations I and III) by using a constant percent growth rate. For the CH₄ control case, O_3 decreases begin in 2010 and exponentially approach the steady-state change (simulation IV minus III) with the 12-yr CH₄ perturbation lifetime (see the supporting information, which is published on the PNAS web site).

Results. Table 3 and Fig. 2 show that reducing CH₄ emissions by 65 Mtyr⁻¹ in 2010 would prevent \approx 30,000 all-cause premature mortalities in the year 2030 (\approx 0.04% of the total projected mortalities), with \approx 370,000 avoided premature mortalities accumulated between 2010 and 2030. These avoided mortalities are distributed globally, with the majority in highly populated regions (Table 3 and Fig. 3). Mortality benefits per million people in 2030 are highest in Africa, which has high baseline mortality rates, followed by Europe and the eastern Mediterranean.

Table 4 shows a large sensitivity to β over the range of uncertainties in Bell *et al.* (6) and three meta-analyses (7–9). The avoided mortalities also vary with the sensitivity of O₃ to CH₄ but are rather insensitive to the low-concentration threshold over the range considered. This insensitivity occurs because regions with low O₃ typically also have low population and small changes in

Table 3. Avoided premature mortalities in 2030 by world region and avoided mortalities per million people in 2030, resulting from decreases in surface O_3 due to a global CH₄ emission reduction of 65 Mt·yr⁻¹

	Avoided total mortalities in 2030		Avoided CR mortalities in 2030	
Region	Number	Per 10 ⁶ people	Number	Per 10 ⁶ people
Africa	6,920	5.59	2,070	1.68
North America	1,110	2.81	700	1.77
Latin America	1,790	1.88	960	1.01
Southeast Asia	7,790	3.33	4,550	1.95
Western Europe	1,900	3.86	1,260	2.56
Eastern Europe and former Soviet Union	1,790	3.50	1,560	3.06
Eastern Mediterranean	3,150	3.69	1,660	1.94
Western Pacific	500	2.86	310	1.77
East Asia	5,250	2.36	3,610	1.63
Global	30,200	3.29	16,700	1.82

 O_3 due to CH₄; O_3 is below 25 ppbv on $\approx 12\%$ of populated grid square-days in 2030, but the number of avoided mortalities decreases by only 2% relative to the no-threshold case.

The mortality benefits of O₃ decreases are most uncertain in developing nations, where fewer epidemiologic studies exist and the general causes of death differ substantially from those in industrialized nations. As a more conservative estimate, we consider the avoided cardiovascular and respiratory (CR) mortalities, because these may be more closely linked to O_3 . We apply the β for CR mortalities from Bell *et al.* (6), which is higher than for total mortalities but not significantly different, to baseline CR mortality rates. In Table 3, \approx 17,000 premature CR mortalities can be avoided globally in 2030 by the CH₄ emission reduction, with the greatest per capita benefits in Europe, where relatively more people die of CR causes. Although our estimates of avoided CR mortalities may be more robust in developing nations than total mortalities, they likely miss important decreases in other causes of mortality. Henceforth, we use an uncertainty range from the estimated avoided CR mortalities (\approx 17,000 in 2030) to the highest number in Table 4 (\approx 56,000).

Effects of Changes in PM on Mortality. By using the changes in inorganic PM in the previous section and a chronic PM-mortality relationship (34), the avoided 2030 mortalities are estimated to be less than, but comparable with, the O_3 benefit (see the

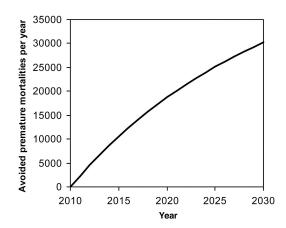


Fig. 2. Avoided global premature mortalities from a 65 $Mt \cdot yr^{-1}$ CH₄ emission reduction, beginning in 2010.

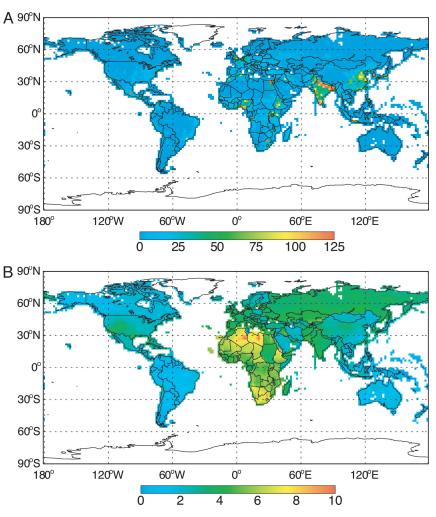


Fig. 3. Estimated avoided premature mortalities in 2030. (A) Total. (B) Per million people.

supporting information). The effects of CH_4 reductions on both inorganic and organic PM should be further investigated, including changes in PM precursor emissions from energy sources possibly displaced because of increased CH_4 availability.

Policy Analysis of Ozone Control by Means of Methane Mitigation

A compilation of global CH₄ abatement measures from five industrial sectors (27) shows that \approx 41 Mt·yr⁻¹ can be reduced at a negative marginal cost (net cost-savings, through natural gas recovery), which can be justified regardless of health benefits.

 Table 4. Sensitivity of global 2030 avoided premature mortalities to uncertain parameters

Parameter	Base value	Range	Avoided mortalities over range
β*	0.043	0.027-0.079	19,300–55,800
O ₃ sensitivity to CH ₄ ⁺		-35% to +35%	19,600–40,700
Low-concentration threshold, ppbv	25	40–0	26,900–30,900

Using base values gives 30,200 avoided premature mortalities.

*Percent excess mortality per ppbv change in 8-h O₃ mixing ratio. The range spans the 95% confidence intervals of four studies (6–9).

 $^{\dagger}\text{Range}$ applied as scaling factors to the change in daily 8-h O_3 in each grid square.

The 65 Mt·yr⁻¹ reduction has a marginal cost of ~\$100 per tonne of CH₄ (2000 U.S. dollars), whereas the net cost of this reduction is negative. We combine this marginal cost with the all-cause avoided premature mortalities, which we convert to a constant annualized benefit between 2010 and 2030 at a 5% yr⁻¹ discount rate (see the supporting information), yielding \$420,000 per avoided mortality (\$230,000–\$760,000) as the marginal cost-effectiveness of reducing 65 Mt·yr⁻¹. The 65 Mt·yr⁻¹ reduction would be justified, in cost-benefit terms, for any globally averaged VSL >\$420,000.

If we use \$1 million as a reasonable globally averaged VSL (39), the monetized benefit of reducing CH₄ emissions is \$240 per tonne of CH₄ (\$140–\$450), or \$12 per tonne of CO₂ equivalent (\$7–\$22), which exceeds the marginal cost of the 65 Mt·yr⁻¹ reduction (\approx \$100 per tonne of CH₄). This estimate neglects increases in the VSL as incomes grow, and only considers 20 yr of benefits, whereas the O₃ reductions will continue growing beyond 2030 as population also grows. The monetized benefit scales proportionally with the assumed globally averaged VSL.

Because CH₄ reductions have recently traded in international markets at 10-20 per tonne of CO₂ equivalent, these results suggest that current climate-motivated CH₄ emission reductions can roughly be justified by their benefits to air quality and health, irrespective of other benefits of CH₄ and O₃ reductions. Furthermore, although the ancillary benefits of CO₂ mitigation for air quality and health have received attention (40), the ancillary

benefits of CH₄ mitigation have not. Our estimate for CH₄ of \$12 per tonne of CO₂ equivalent is comparable with the range estimated previously for CO₂ of 0.5-\$140 per tonne of CO₂ (41). Unlike the ancillary benefits of CO₂ mitigation, however, the ancillary benefits of CH₄ mitigation do not depend on the location or means of CH₄ abatement, because the health benefits of CH₄ mitigation result from reactions involving the CH₄ itself, and CH₄ emissions affect O₃ globally regardless of emission location.

The compilation of CH_4 abatement measures used in this study (27) considers five industrial sectors (coal, oil, and natural gas operations, landfills, and wastewater treatment) for which methane abatement opportunities are well understood. Because this compilation neglects abatement opportunities in the large agricultural sector, it may underestimate the availability of low-cost CH_4 options, which would suggest that CH_4 mitigation is more cost-effective than estimated here. On the other hand, a separate compilation by the U.S. Environmental Protection Agency (42–44) suggests that less CH_4 can be reduced at low cost (see the supporting information and ref. 20).

Methane mitigation also benefits climate, because it reduces the radiative forcing of both CH_4 and O_3 . The 65 $Mt \cdot yr^{-1} CH_4$ reduction would decrease global radiative forcing by $0.14 W \cdot m^{-2}$, from CH_4 and O_3 together (at steady state). In contrast, reductions in NO_x emissions decrease O_3 forcing but increase CH_4 forcing (45), with a net effect that could be positive or negative depending on location (46).

Methane is also an important source of global energy, and capturing half of the 65 Mt·yr⁻¹ for energy use would provide $\approx 2\%$ of current global natural gas production. The reductions in O₃ concentrations would also result in benefits to human health (morbidity) and agriculture (47), which we previously estimated to be smaller than the monetized benefits of avoided mortalities estimated here (20). Methane mitigation may further benefit air quality and climate by removing other pollutants (e.g., VOCs) through the same actions that reduce CH₄ emissions, and by increasing the availability of natural gas, which may reduce emissions of CO_2 and air pollutants from the combustion of other fossil fuels. In addition, because the reductions in O₃ are widespread globally, CH₄ mitigation may increase the net primary productivity of plants, causing increased uptake of CO2 (48). Finally, methane mitigation may affect stratospheric O₃, but the direction of that influence is not certain (49).

The effects of CH_4 mitigation on surface O_3 concentrations are widespread globally, and are delayed. These characteristics differ from other means of controlling O_3 , as well as most actions to manage air quality, which abate local and regional pollution over hours to weeks. Because of its global impacts, with small

- U.S. Environmental Protection Agency (1996) Air Quality Criteria for Ozone and Related Photochemical Oxidants (Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC), EPA Publication EPA/600/P-93/004cF.
- Levy, J. I., Carrothers, T. J., Tuomisto, J. T., Hammitt, J. K. & Evans, J. S. (2001) Environ. Health Perspect. 109, 1215–1226.
- Thurston, G. D. & Ito, K. (2001) J. Exposure Anal. Environ. Epidemiol. 11, 286–294.
- Anderson, H. R., Atkinson, R. W., Peacock, J. L., Marston, L. & Konstantinou, K. (2004) Meta-Analysis of Time-Series Studies and Panel Studies of Particulate Matter (PM) and Ozone (O₃) (WHO, Geneva).
- Gryparis, A., Forsberg, B., Katsouyanni, K., Analitis, A., Touloumi, G., Schwartz, J., Samoli, E., Medina, S., Anderson, H. R., Niciu, E. M., et al. (2004) *Am. J. Respir. Crit. Care Med.* **170**, 1080–1087.
- Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M. & Dominici, F. (2004) J. Am. Med. Assoc. 292, 2372–2378.
- 7. Bell, M. L., Dominici, F. & Samet, J. M. (2005) Epidemiology 16, 436-445.
- 8. Ito, K., De Leon, S. F. & Lippman, M. (2005) Epidemiology 16, 446-457.
- 9. Levy, J. I., Chemerynski, S. M. & Sarnat, J. A. (2005) Epidemiology 16, 458-468.
- 10. Schwartz, J. (2005) Am. J. Respir. Crit. Care Med. 171, 627-631.
- 11. Volz, A. & Kley, D. (1988) Nature 332, 240-242.

local benefits, CH_4 mitigation for air quality purposes (as for climate) will best be implemented at national and international levels. Furthermore, the potential for reducing O₃ through CH_4 mitigation is limited to a few parts per billion by volume. Methane mitigation is therefore most appropriate for international and long-term (decadal) O₃ management, where CH_4 mitigation for background O₃ is complementary to local and regional O₃ management through reductions in emissions of NO_x and nonmethane VOCs (20).

Important uncertainties in this study lie in the relationship between O_3 and mortality, and between CH_4 emissions and global surface O_3 concentrations. Because CH_4 affects O_3 globally, this research highlights the need to improve understanding of O_3 mortality in developing nations, and of the relationship between O_3 and mortality at low concentration, including consideration of possible thresholds. Future research should also investigate the effects of CH_4 mitigation on PM concentrations, and its implications for air quality, public health, and climate. Finally, future research should further examine opportunities to abate CH_4 emissions, emphasizing the large agricultural sector.

Conclusions

As background O₃ concentrations increase, meeting national O₃ standards increasingly becomes an international problem (50-52). Methane mitigation reduces surface O_3 everywhere, offering a unique opportunity to improve air quality globally. We estimate that reducing $\approx 20\%$ of current global anthropogenic CH₄ emissions, which can be achieved at a net cost-savings by using identified technologies, will reduce O₃ mixing ratios globally by ≈ 1 ppbv and prevent $\approx 30,000$ premature mortalities globally in 2030 and \approx 370,000 mortalities between 2010 and 2030. If these mortalities are valued at \$1 million each, the monetized benefit is \approx \$240 per tonne of CH₄, or \approx \$12 per tonne of CO₂ equivalent. These benefits exceed the marginal costs of the 20% anthropogenic CH₄ reduction (≈\$100 per tonne of CH₄) and demonstrate that CH₄ mitigation has ancillary benefits to air quality and human health that are comparable with those previously estimated for CO₂. Methane mitigation benefits air quality, public health, agriculture, climate, and energy, and should increasingly be considered a cost-effective component of international long-term O₃ management.

We thank M. Bell, J. Levy, V. Naik, and M. Oppenheimer for helpful advice and comments on earlier drafts. This work was supported by the National Oceanic and Atmospheric Administration and a National Aeronautics and Space Administration New Investigator Program grant (to D.L.M.).

- Marenco, A., Gouget, H., Nedelec, P., Pages, J. P. & Karcher, F. (1994) J. Geophys. Res. 99, 16617–16632.
- 13. Vingarzan, R. (2004) Atmos. Environ. 38, 3431-3442.
- Lelieveld, J., van Aardenne, J., Fischer, H., de Reus, M., Williams, J. & Winkler, P. (2004) *Science* **304**, 1483–1487.
- 15. Lelieveld, J. & Dentener, F. J. (2000) J. Geophys. Res. 105, 3531-3551.
- 16. Wang, Y. H. & Jacob, D. J. (1998) J. Geophys. Res. 103, 31123-31135.
- Prather, M., Gauss, M., Berntsen, T., Isaksen, I., Sundet, J., Bey, I., Brasseur, G., Dentener, F., Derwent, R., Stevenson, D., et al. (2003) Geophys. Res. Lett. 30, 1100.
- Dentener, F., Stevenson, D., Cofala, J., Mechler, R., Amann, M., Bergamaschi, P., Raes, F. & Derwent, R. (2005) *Atmos. Chem. Phys.* 5, 1731–1755.
- Fiore, A. M., Jacob, D. J., Field, B. D., Streets, D. G., Fernandes, S. D. & Jang, C. (2002) *Geophys. Res. Lett.* 29, 1919.
- 20. West, J. J. & Fiore, A. M. (2005) Environ. Sci. Technol. 39, 4685-4691.
- Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G. Y. & Solomon, S. (2001) in *Climate Change* 2001: The Scientific Basis, eds. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. & Johnson, C. A. (Cambridge Univ. Press, Cambridge, U.K.), pp. 349–416.
- Reilly, J., Prinn, R., Harnisch, J., Fitzmaurice, J., Jacoby, H., Kicklighter, D., Melillo, J., Stone, P., Sokolov, A. & Wang, C. (1999) *Nature* 401, 549–555.

- Hayhoe, K., Jain, A., Pitcher, H., MacCracken, C., Gibbs, M., Wuebbles, D., Harvey, R. & Kruger, D. (1999) *Science* 286, 905–906.
- 24. Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., Tie, X. X., Lamarque, J. F., Schultz, M. G., Tyndall, G. S., *et al.* (2003) *J. Geophys. Res.* **108**, 4784.
- Tie, X., Madronich, S., Walters, S., Edwards, D. P., Ginoux, P., Mahowald, N., Zhang, R., Luo, C. & Brasseur, G. (2005) J. Geophys. Res. 110, D03204.
- Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grubler, A., Jung, T. Y., Kram, T., et al. (2000) Special Report on Emissions Scenarios (Cambridge Univ. Press, Cambridge, U.K.).
- International Energy Agency Greenhouse Gas R&D Programme (2003) Building the Cost Curves for the Industrial Sources of Non-CO₂ Greenhouse Gases (International Energy Agency, Cheltenham, U.K.), PH4/25.
- Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., et al. (2001) in Climate Change 2001: The Scientific Basis, eds. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. & Johnson, C. A. (Cambridge Univ. Press, Cambridge, U.K.), pp. 239–287.
- Stevenson, D., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije, T. P. C., Wild, O., Zeng, G., Amann, M., Atherton, C. S., Bell, N., *et al.*, *J. Geophys. Res.*, in press.
- Hogrefe, C., Lynn, B., Civerolo, K., Ku, J. Y., Rosenthal, J., Rosenzweig, C., Goldberg, R., Gaffin, S., Knowlton, K. & Kinney, P. L. (2004) *J. Geophys. Res.* 109, D22301.
- Knowlton, K., Rosenthal, J. E., Hogrefe, C., Lynn, B., Gaffin, S., Goldberg, R., Rosenzweig, C., Civerolo, K., Ku, J. Y. & Kinney, P. L. (2004) *Environ. Health Perspect.* 112, 1557–1563.
- 32. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., et al. (1996) Bull. Am. Meteorol. Soc. 77, 437–471.
- Shindell, D. T., Faluvegi, G., Bell, N. & Schmidt, G. A. (2005) *Geophys. Res.* Lett. 32, L040803.
- 34. Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K. & Thurston, G. D. (2002) J. Am. Med. Assoc. 287, 1132–1141.
- Borja-Aburto, V. H., Castillejos, M., Gold, D. R., Bierzwinski, S. & Loomis, D. (1998) Environ. Health Perspect. 106, 849–855.
- 36. O'Neill, M. S., Loomis, D. & Borja-Aburto, V. H. (2004) Environ. Res. 94, 234-242.
- Kim, S. Y., Lee, J. T., Hong, Y. C., Ahn, K. J. & Kim, H. (2004) *Environ. Res.* 94, 113–119.

- 38. World Health Organization (2004) *The World Health Report 2004: Changing History* (WHO, Geneva).
- Markandaya, A., Halsnaes, K., Lanza, A., Matsuoka, Y., Maya, S., Pan, J., Shogren, J., Seroa de Motta, R. & Zhang, T. (2001) in *Climate Change 2001: Mitigation*, eds. Metz, B., Davidson, O., Swart, R. & Pan, J. (Cambridge Univ. Press, Cambridge, U.K.), pp. 451–498.
- Cifuentes, L., Borja-Aburto, V. H., Gouveia, N., Thurston, G. & Davis, D. L. (2001) Science 293, 1257–1259.
- 41. Hourcade, J.-C., Shukla, P., Cifuentes, L., Davis, D., Edmonds, J., Fisher, B., Fortin, E., Golub, A., Hohmeyer, O., Krupnick, A., *et al.* (2001) in *Climate Change 2001: Mitigation*, eds. Metz, B., Davidson, O., Swart, R. & Pan, J. (Cambridge Univ. Press, Cambridge, U.K.), pp. 499–559.
- 42. U.S. Environmental Protection Agency (1999) U.S. Methane Emissions 1990–2010: Inventories, Projections, and Opportunities for Reductions (U.S. Environmental Protection Agency, Washington, DC), EPA Publication 430-R-99-013.
- 43. U.S. Environmental Protection Agency (2003) International Analysis of Methane and Nitrous Oxide Abatement Opportunities: Report to the Energy Modeling Forum, Working Group 21 (U.S. Environmental Protection Agency, Washington, DC), www.epa.gov/methane/pdfs/methodologych4.pdf.
- Delhotal, K. C., de la Chesnaye, F. C., Gardiner, A., Bates, J. & Sankovski, A., Energy J., in press.
- Fuglestvedt, J. S., Berntsen, T. K., Isaksen, I. S. A., Mao, H. T., Liang, X. Z. & Wang, W. C. (1999) *Atmos. Environ.* 33, 961–977.
- Naik, V., Mauzerall, D., Horowitz, L., Schwarzkopf, M. D., Ramaswamy, V. & Oppenheimer, M. (2005) J. Geophys. Res. 110, D24306.
- 47. Mauzerall, D. L. & Wang, X. P. (2001) Annu. Rev. Energy Environ. 26, 237-268.
- Felzer, B., Kicklighter, D., Melillo, J., Wang, C., Zhuang, Q. & Prinn, R. (2004) *Tellus* 56, 230–248.
- World Meteorological Organization (2003) Scientific Assessment of Ozone Depletion: 2002 (Global Ozone Research and Monitoring Project, World Meteorological Organization, Geneva), Report No. 47.
- 50. Akimoto, H. (2003) Science 302, 1716-1719.
- Holloway, T., Fiore, A. & Hastings, M. G. (2003) Environ. Sci. Technol. 37, 4535–4542.
- 52. Keating, T. J., West, J. J. & Farrell, A. E. (2004) in *Intercontinental Transport* of *Air Pollution*, ed. Stohl, A. (Springer, Berlin), pp. 295–320.