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Abstract
China is the world’s top carbon emitter and suffers from severe air pollution. It has recently
made commitments to improve air quality and to peak its CO2 emissions by 2030. We examine
one strategy that can potentially address both issues—utilizing long-distance electricity
transmission to bring renewable power to the polluted eastern provinces. Based on an integrated
assessment using state-of-the-science atmospheric modeling and recent epidemiological evidence,
we find that transmitting a hybrid of renewable (60%) and coal power (40%) (Hybrid-by-wire)
reduces 16% more national air-pollution-associated deaths and decreases three times more
carbon emissions than transmitting only coal-based electricity. Moreover, although we find that
transmitting coal power (Coal-by-Wire, CbW) is slightly more effective at reducing air pollution
impacts than replacing old coal power plants with newer cleaner ones in the east (Coal-by-Rail,
CbR) (CbW achieves a 6% greater reduction in national total air-pollution-related mortalities
than CbR), both coal scenarios have approximately the same carbon emissions. We thus
demonstrate that coordinating transmission planning with renewable energy deployment is
critical to maximize both local air quality benefits and global climate benefits.
1. Introduction

Most countries now recognize that climate change is a
serious problem, and are experimenting with ways to
cut greenhouse gas (GHG) emissions that align with
their national interests. For most developing countries
that means finding ways in which reducing GHG
emissions facilitates the achievement of local goals
such as reduced air pollution with associated
© 2017 The Author(s). Published by IOP Publishing Ltd
improvements in public health [1]. Given the short
time horizon of politicians and the fact that global
benefits from reductions in climate change are diffused
over all countries, tangible national co-benefits have
proved to be more effective in motivating immediate
carbon mitigation actions than the long-term threat
from climate change [2].

One central finding from the latest report of the
Intergovernmental Panel on Climate Change (IPCC)
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Figure 1. (a) Electricity Transmission Corridors for Air Pollution Control in China. Simulated annual mean provincial-averaged PM2.5

concentrations in BASE (four month average of January, April, July, October 2010) are indicated in color for each province. The
arrows indicate the general origins, directions and destinations of the transmission lines. Electricity importing and exporting
provinces are highlighted with green and blue boundaries, respectively. Nine lines will rely on ultra-high-voltage (UHV) transmission
technology (direct current transmission lines at voltage of ±800 KV and alternating current lines at 1000 KV). (b) Air pollutant
emissions. Annual total SO2 emissions from electricity generation in BASE, and changes in the energy transfer scenarios (emission
changes shown in 0.25� 0.25 degree grid size). For CbR, the percentage shows the percent reduction in local emissions in the eastern
provinces due to upgraded coal power generation. For energy-by-wire scenarios, the percentages show the changes in emissions as a
percentage of total local emissions in importing (IM) and exporting (EX) regions in BASE, as well as the net changes as a percentage of
total emissions in the importing and exporting regions (NET = DSO2(IM þ EX)/SO2,BASE(IM þ EX)).
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is that electrification will likely play a central role in
decarbonizing energy systems [3]. Decarbonization by
electrification is possible in many ways, and many
governments are looking at much larger roles for
renewables—an option that requires careful long-
distance transmission planning since renewable
resources are often remote from centers of power
demand and often variable and intermittent in supply
(especially wind and solar power) [4, 5]. They hence
often require transmission systems sized much larger
than the useful power they consistently deliver, and
require local suppliers of electricity to manage
reliability—often by using fossil-based power plants
that contribute to local air pollution. However, most
transmission lines are powered entirely by fossil-based
energy at present. Although electricity transmission
could help relocate fossil-based generation and
associated air pollution to remote areas, fossil fuel
powered ‘energy by wire’ approaches still result in large
carbon emissions and global climate impacts. Thus
‘energy by wire’ strategies may involve tradeoffs
between local and global benefits. Our paper develops
methods to quantify these tradeoffs.

We focus on China, where national policy has
emphasized the need to achieve global carbon
mitigation goals in ways that maximize national air
pollution benefits [6, 7]. China thus serves as a
valuable test case for other emerging economies—
such as India, South Africa and Indonesia—that also
have large potentials for curbing their growing CO2

emissions but are wary of adopting expensive policies
unless they yield large, tangible local benefits.
Moreover, China is a pivotal country in global
cooperation on energy and climate. The country is
the world’s top carbon emitter and largest investor in
renewable energy. It has recently made commitments
2

to peak its CO2 emissions by 2030 [8]. Most
importantly, as a country facing severe air pollution,
concerns about air pollution have already inspired the
government to move coal power plants out of polluted
urban areas in the east and to expand investment in
long-distance transmission capacity. Twelve ‘Electrici-
ty Transmission Corridors for Air Pollution Control’
are under construction to replace eastern coal power
generation with imported electricity in order to reduce
local air pollution [9] (figure 1(a) and supplementary
table 1, available at stacks.iop.org/ERL/12/064012/
mmedia), making it the first time in the world that
transmission planning is used for air pollution control.
The experience with these transmission systems is
likely to guide subsequent investment in China and
other countries.

Most previous studies on electricity transmission
either focus entirely on the carbon emissions [10, 11]
or simply tabulate the reduction of local air pollutant
emissions without evaluating the impact of those
emissions on air quality and human health [12]. Here
we not only account for the carbon emissions, but also
conduct a sophisticated evaluation of the air quality
impacts on health. We use a regional state-of-the-
science air pollution model [13] to fully consider the
effect of meteorological factors and atmospheric
chemistry, and recent epidemiological evidence that
finds decreasing health impacts from a unit increase in
PM2.5 (fine particulate matter of 2.5 mm diameter or
smaller) at the elevated PM2.5 concentrations found in
highly polluted parts of China (i.e. concave shape of
mortality risk functions) [14, 15]. Furthermore, most
prior literature has looked at highly stylized scenarios
—such as fully coal-by-wire [16] (which reduces local
air pollution but has little global benefit) or almost
fully renewables such as wind-by-wire [17] (which can
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Table 1. Scenario Summary.

Scenario Name Percent change in electricity production

Base Case (BASE) No change, actual 2010 electricity generation

IM regions EX regions

Coal-by-rail (CbR) No change in total generation, but use

larger, cleaner coal units

No change

Energy-
by-wire

Coal-by-wire
(CbW) �31%: Reduce coal power generation

from small, dirty units

þ48%: Add power generation

for transmission

All from coal

Hybrid-by-wire
(Hybrid)

60% from wind and hydroa,

40% from coal

a Hydro for Yunnan, wind for the rest of exporting regions. The upper limit of wind power production in each exporting province is

from the high estimate of provincial-scale wind resource potential in He and Kammen 2014 [26].

(Note : IM and EX regions indicate importing and exporting regions)
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be quite expensive given the variability of wind
resources). In contrast, our approach examines
scenarios that align with current government plans
for the near future of the Chinese power system. Based
on current plans, nine of the twelve proposed lines will
transmit only coal power. Two are planned to transmit
wind power along with coal power (though the exact
power mix is not specified in the plan), and a third in
southern China will be powered entirely by hydroelec-
tricity. We therefore look at a fully coal by wire
scenario, and compare it to a hybrid of renewables and
coal by wire scenario considering the renewable
resource potentials in the power exporting regions.
The current government plan is in between these two
‘by-wire’ scenarios, and likely closer to the fully coal by
wire scenario. Due to the geographic mismatch
between resource-abundant western provinces and
the demand centers in the east, long-distance
transmission is critical in both scenarios in order
for the eastern provinces to access coal or renewable
resources in inland regions.We also compare these two
‘by-wire’ strategies to ‘coal by rail’, the most commonly
used energy transfer option at present in which coal
(abundant in the west of the country) is transported as
primary fuel to wealthier, populous centers in the east
where it is burned to generate power [18].
2. Methods and materials
2.1. Energy and emission scenarios
We design a base case (BASE) plus three additional
scenarios that are rooted in real-world options for
Chinese policy makers (table 1 and online supple-
mentary tables 2–3). The BASE uses the actual
electricity generation [19] and emission data (Multi-
resolution Emission Inventory, MEIC [20]) for 2010.
Two scenarios represent the twomain options for coal-
fired power: coal-by-rail (CbR) and coal-by-wire
(CbW). We replace small, inefficient coal units in
the eastern provinces with larger, more efficient coal
power plants added locally in CbR, or with imported
coal-fired electricity in CbW that is transmitted
3

through long-distance transmission lines in the dozen
corridors shown in figure 1(a). Different geographic
location of coal power generation inCbWandCbR can
affect population exposure and the health impacts
[21]. Third we design a hybrid by wire scenario
(Hybrid) in which both renewable (wind and hydro,
60%) and coal-fired electricity (40%) is transmitted to
replace eastern coal power generation. This 60/40 split
is based on a high estimate of provincial renewable
resource potential in the exporting regions [22] and
the extent to which these regions would allow excess
renewable power exports. In other words, our Hybrid
scenario assumes the largest possible amount of
renewable transmission through the proposed lines,
whereas the CbW scenario assumes no renewable
transmission at all. We thus provide a high and low
estimate for the potential share of renewables in the
fuel mix to power the proposed lines.

We assume the transmission lines operate at an
annual average utilization rate of 80% with no
transmission losses. These assumptions allow for
the largest transmission volume and associated
benefits that can be achieved from the proposed lines.
Realizing that the actual utilization rate may be lower
and the transmission losses can be significant, we
conduct sensitivity analyses on a lower utilization rate
of 50% (online supplementary figure 12) and
0%–10% transmission losses (online supplementary
figure 9). If a transmission line involves more than one
recipient province, we assume the imported electricity
is distributed among the recipients according to their
electricity demand in 2010. If one line involves two
exporting provinces, we assume each of them
produces half of the coal-fired electricity transmitted
through the line. As for the scale, the transmitted
electricity could replace one-third of BASE power
generation in the importing regions, while requiring
production in exporting regions to increase by ∼50%.
In Hybrid, the total penetration of wind generation is
6% for the importing and exporting regions together
(online supplementary table 3).

We calculate the changes in annual total emissions
of CO2 and air pollutants by multiplying the changes
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in electric power output resulting from the displaced
and added generation with the emission factors of the
respective generation technology (online supplemen-
tary tables 2 and 4). We only consider combustion-
related CO2 emissions from the coal units [23], and air
pollutant emissions from the electricity production
process. The air pollutant emission factors for the
displaced coal units are estimated from a database
[24], while those for added coal capacity are based on
Zhao et al 2014 [25]. We assume no air pollutants or
CO2 emissions from renewable generation. The
emissions from non-power sectors and in non-
importing/exporting provinces remain unchanged.
2.2. Regional atmospheric chemistry simulation and
evaluation
For BASE and the three energy transfer scenarios, we
simulate air quality in East Asia for January, April, July
and October 2010 using WRF-Chem v3.6 [13] at 27�
27 km2 horizontal resolution with 31 vertical layers
from the surface to 100 hPa. The model uses RADM2
gas-phase chemistry and the MADE-SORGAM
aerosol scheme, with the meteorological fields nudged
towards the NCEP FNL data [27] every 6 h. The
chemistry initial and boundary conditions are
provided by a global chemistry transport model,
MOZART-4 [28]. For BASE, we use anthropogenic
emissions from the MEIC database for China (0.25 �
0.25 degree) [20] and the 2006 INTEX-B inventory for
regions outside China [29]. For energy transfer
scenarios, we allocate annual total emissions to
gridded hourly emissions following the spatial and
temporal pattern in the BASE inventory. All anthro-
pogenic emissions are emitted to the model surface
layer. The BASE simulations are evaluated using
observational data from U.S. State Department China
Air Quality Monitoring Program [30] and the Acid
Deposition Monitoring Network in East Asia
(EANET) [31] (online supplementary table 10 and
online supplementary figures 1–4). More details are
described in online supplementary table 5.

2.3. Evaluating health impacts from air pollution
exposure
We focus on ambient fine particulate matter (PM2.5),
the air pollutant with the largest impact on human
health [32] (see online supplementary figures 4 and 8
for results on ozone). For four diseases associated with
long-term exposure to PM2.5 (ischemic heart disease,
stroke, chronic obstructive pulmonary disease and
lung cancer), we use the following equation to
calculate the mortality changes relative to the BASE
scenario in each province:

ΔMortalityd ¼ Id;BASE⋅Pop⋅
RRd Csð Þ

RRd CBASEð Þ � 1

� �

Pop is the total adult population aged 25 and above in
each province, based on county-level China census
4

data [33]. Id,BASE is the disease-specific (d) annual
average national BASE mortality rate in the total adult
population. RRd(Cs) and RRd(CBASE) are the relative
risks (RR) of disease d for adult population at the
PM2.5 levels of Cs in scenario s and CBASE in BASE,
respectively. Id,BASE and RR are based on the Global
Burden of Disease (GBD) database [15]. We use the
four-month average of the simulated population-
weighted, provincial-averaged PM2.5 concentrations
to estimate annual mean exposures for each province.
Sensitivity analyses on linear RR functions and spatial
resolution for exposure assessment are presented in
online supplementary figure 11.
3. Results
3.1. Health-related air quality benefits
3.1.1. Air pollutant emissions
Power plants emit little PM2.5 directly. We hence
present results on precursor pollutants of SO2 and
NOx, that form secondary PM2.5 in the atmosphere. In
CbR, air pollutant emissions only decline in the
eastern importing provinces (6% and 11% reduction
in SO2 and NOx emissions). In the energy-by-wire
scenarios, eastern emissions decline more (15% and
16% reduction in SO2 and NOx emissions), while
emissions increase in the exporting regions due to
added coal power generation (figure 1(b) (SO2) and
online supplementary figure 5 (NOx)). As renewable
electricity generation has no emissions, Hybrid yields
smaller increases in power exporting regions (4% and
3% increase in SO2 and NOx emissions) than CbW
(10% and 8% increase in SO2 and NOx emissions).
Total emission changes across all importing and
exporting regions for Hybrid are a decrease of 6%
and 9% for SO2 and NOx, respectively, as compared to
a decrease of 3% and 7% in CbW.

3.1.2. Simulated PM2.5 levels
We compare our BASE simulation results with
observations, and find that our simulations capture
the day-to-day PM2.5 variation for four representative
months in 2010 in Beijing (figure 2(b)) and other
regions in East Asia (online supplementary figures
1–3). The BASE PM2.5 concentrations are generally
higher in eastern and southwest China, and during
autumn and winter (figure 2(a)), which are largely
affected by seasonally varying meteorological con-
ditions.

In the eastern provinces—the ones targeted for
pollution reduction—electricity transmission irre-
spective of fuel source results in a 2–3 mg m�3 (or
2%–7%) reduction in the annual mean PM2.5

concentrations, roughly 1 mg m�3 greater than the
reduction achieved in CbR (figure 2(c)). Although
switching from coal to hybrid power transmission
does not further improve eastern air quality, adding
zero-emission renewable capacity would avoid the
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PM2.5 increase in some northern exporting regions
observed in CbW. Since downwind regions of the
eastern importing provinces can also benefit from the
air quality improvement there, even in CbW we find
the PM2.5 levels in the exporting regions located in the
northeast or surrounded by the importing regions are
slightly lower than their BASE levels. We also find
small PM2.5 reductions in southern and central China
in all three scenarios, because these regions are
downwind of the eastern provinces for the most time
throughout the year (see online supplementary figures
6 and 7 for monthly PM2.5 results and wind fields).
Such results are robust under meteorological con-
ditions favorable for pollution formation and accu-
mulation (see online supplementary figure 10). Since
our BASE simulation does not show systematic biases,
the general pattern of the PM2.5 reduction in each
scenario and the ranking of the three scenarios should
be robust.

3.1.3. Air-pollution-related deaths
We estimate the national total annual premature
deaths associated with the exposure to outdoor PM2.5

to be 0.85 million in BASE (comparable to 0.86 million
in GBD study [34]). Compared with BASE, Hybrid
avoids 16% more premature mortalities nationally
than CbW (∼16 000 and 14 000 cases, respectively).
Most of the additional avoided deaths occur in the
exporting regions, due to slightly lower PM2.5

concentrations there when more renewable generation
5

is utilized for transmission. In comparison, the two
coal-based scenarios yield similar scale of avoided
deaths (only 6% higher for CbW than CbR) (figure 3
(b)). Therefore, at the national level, CbW has modest
additional health-related air quality benefits compared
with CbR despite the fact that Chinese planners have
focused on wiring coal precisely for its air pollution
advantages. Instead, CbW shifts the geographical
pattern of mortality impacts by avoiding more deaths
in polluted eastern cities but fewer deaths in the rest of
the country compared to CbR. Such results are largely
driven by the concavity of the relative risk functions.
While a small PM2.5 decrease in less polluted, southern
regions results in nontrivial reduction in mortality
risk and hence premature mortality, the flattening
of RR functions is relevant at the BASE PM2.5 levels
in many eastern provinces, leading to smaller
mortality risk reductions there (figure 3(a)).
Applying linear RR functions would increase the
magnitudes of avoided deaths in the energy transfer
scenarios and the differences across them (online
supplementary figure 11).

Besides PM2.5, ground-level ozone is also associ-
ated with negative health impacts, but with a smaller
mortality risk compared with exposure to PM2.5 [35,
36]. We find a small increase in eastern ozone
concentrations in the three scenarios because lowered
NOx emissions increase ozone concentrations due to
non-linear chemistry. However, the mortality impacts
associated with such a small change in ozone exposure
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is unlikely to be substantial (More details in online
supplementary figures 4 and 8).

3.2. Carbon emissions
With zero-emitting renewable energy displacing coal
power generation, a net annual reduction of roughly
340 million tons of CO2 emissions is obtained in
Hybrid, equivalent to a 4% decrease in national total
all-sector carbon emissions. By contrast, CbW and
CbR have little effect on carbon emissions, as
reductions only result from efficiency improvements
in the new coal units relative to the displaced ones. The
scale of the net reduction in CbR and CbW is nearly
identical, as the same new coal power generation
6

replaces old coal generation in both scenarios though
in different locations (figure 4).Hybrid reduces carbon
emissions three times more than either coal-based
scenario, suggesting large global climate benefits of
utilizing transmission lines to deliver a hybrid of
renewable and coal power instead of coal power alone.
The importance of the power mix in determining the
carbon implications of electricity transmission has
also been found in prior studies on carbon emissions
embodied in inter-regional transmission in China
[11]. Although our results do not consider transmis-
sion losses, the effect of transmission losses on carbon
emissions are generally small as shown in our
sensitivity analyses (online supplementary figure 9).
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4. Discussion

Our evaluation of the air quality and climate benefits
of the three energy transfer scenarios is subject to four
main sources of uncertainty: transmission losses,
meteorological variation, shape of the concentration-
response relationships, and potentially a lower
utilization rate of the transmission lines than we
assumed in our Hybrid scenario. By conducting
sensitivity analyses (section 5 in the online supple-
mentary Materials), we find our main conclusion that
Hybrid-by-wire results in greater air quality and
climate benefits than coal-based options is still robust.

Here we discuss the cost-effectiveness of various
energy-by-wire strategies by combining available cost
data with the national total air quality and climate
benefits evaluated in the previous section. We report
the economic values in inflation-adjusted 2010US$.

a) CbW vs. CbR
When coal is the fuel choice, our analysis suggests
similar climate benefits and only slightly larger health-
related air quality benefits from CbW as compared to
CbR at the national scale (6% greater reduction in
national total premature deaths in CbW than CbR).
On the cost side, CbR incurs coal transport costs,
which lead to higher delivered coal prices for coal
power generation in the eastern importing provinces
than inland exporting provinces. As such, based on
province-specific levelized cost of coal-fired electricity
(online supplementary table 7), we find that the
annualized coal power generation costs are US$4bn
higher in CbR than CbW due to coal transport costs.
The transmission cost to enable CbW, however, is
difficult to estimate, due to limited existing cost data
for transmission lines that use advanced ultra-high-
voltage (UHV) technologies. Davidson et al estimated
the UHV transmission cost to be 0.095 (low: 0.076,
high: 0.126) RMB kWh�1 and 0.111 (low: 0.088,
high: 0.147) RMB kWh�1 from Northeast or
Northwest China to the Sanhua regions (the
combination of Central, East and North China),
respectively. Such estimates are also comparable with
the current price for inter-regional transmission in
China determined by the central government (roughly
0.12 RMB kWh�1) [38]. Therefore, we estimate the
annual total transmission costs to be roughly US
$6.7bn (low: $5.3bn, high, $8.9bn; more details in
online supplementary table 8 and 9). This indicates
that at present it may cost more to transmit coal power
than to transport coal by rail followed by electricity
generation. Our evaluation hence provides no
evidence that the CbW strategy would be more
cost-effective than CbR in curbing national total
air pollution impacts or global climate impacts,
although in the targeted eastern provinces, CbW
indeed reduces air pollution and health impacts more
than CbR. Since UHV transmission is a new and
advanced technology, future UHV costs are likely to
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decrease as learning progresses, which will increase the
competitiveness of the CbW strategy. Our results are
consistent with previous findings that cost-effectivness
is determined by a combination of the investment
costs for new infrastructure and the quantity of energy
transported [16].

b) Hybrid vs. CbW
To evaluate the relative cost-effectiveness of transmit-
ting a hybrid of renewable plus coal power as
compared to coal power alone, we estimate that in
2010 the total power generation cost in Hybrid to be
US$11bn higher than CbW, due to higher generation
costs for wind than coal (average levelized cost of
electricity for wind and coal in exporting regions in
2010: US$72 MWh�1 and US$36 MWh�1, see online
supplementary table 7). Here we neglect the potential
costs to manage the transmission of variable wind
power supply as compared to reliable coal power
supply. It is likely that these costs have decreased since
2010, however.

On the benefit side, we find that Hybrid reduces
16% more air-pollution-related deaths (∼2000 cases)
and three times more carbon emissions (∼260 million
ton) than CbW. However, monetizing these air quality
and climate benefits is controversial and is often based
on the value of a statistical life (VSL, a measure of
people’s willingness to pay to reduce their mortality
risk) and social cost of carbon (SCC, the marginal
global societal cost of emitting an additional ton of
carbon emissions), respectively. The VSL estimates
vary substantially across countries, income groups, age
groups [39], and implicitly involve some value
judgment [40]. The SCC estimates range from $20
to higher than $200 ton�1 in the literature [41–45],
and may still be underestimated due to the high social
discount rate being applied [41] and the omission of
other damages [42, 46]. Therefore, instead of choosing
specific VSL or SCC values, we calculate the breakeven
VSL to favor Hybrid over CbW, above which the
monetized value of the additional air quality benefits
in Hybrid can justify the more expensive costs for
renewable generation. We also estimate the breakeven
carbon price under a range of VSLs above which the
monetized air quality and climate benefits would
justify the higher renewable costs in Hybrid.

Considering only the air quality benefits, a VSL
higher than US$5.0 m (confidence intervals due to RR
functions: 3.5 m, 10.2 m) would favor Hybrid over
CbW. Such breakeven VSL is more than twenty times
higher than China’s present-day VSL estimated from
survey studies (low and high estmates $90 000 [47]
and $250 000 [48]), or three times as high as the
estimate obtained by adjusting the US 2005 VSL with
income elasticity (high estimate of $1.6 m for 2005
VSL in West et al 2013 [49]). Considering the climate
benefits alone, we find a breakeven carbon price of $43
ton�1 to favor Hybrid (figure 5). Considering
combined air quality and climate benefits, the
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breakeven carbon price would only be slightly lowered
under VSL estimates based on surveys ($40–42 ton�1).

To what degree do these benefits from using
renewables accrue nationally? A full analysis should
look not just at national air pollution benefits but also
the benefits from lessening climate impacts that may
occur domestically. That requires decomposing SCC
into national and global impacts—a task not done
much in the literature.However, Anthoff et al 2011 [45]
found that 48% (or 31%) of total global climate
damages will occur in China under a 0.1% (or 1%)
discount rate. That suggests a global SCCof around $80
ton�1 (or $120 ton�1) would yield a Chinese portion of
costs in the $40 ton�1 level that we find favor Hybrid.
This range of global SCC is consistent with the values
found in the extensive western literature on the global
impacts of carbon emissions [41–45].

Therefore, based entirely on plausible national
benefits—mainly improvements in public health and
to a lesser degree lower impacts from climate change—
the strategy of transmitting a hybrid mix of renewables
and coal already appears to be the favorable fuel
choice. The Hybrid strategy will likely become more
attractive in the future with a decline in renewable
technology costs and a growing economic valuation of
the benefits. The drop in wind technology costs in
China from 2010 to 2014 [50–51] could already lower
the wind LCOE in exporting regions by 6%, hence
narrowing the cost difference between Hybrid and
CbW and lowering the breakeven carbon price
(figure 5). People’s willingness-to-pay to reduce
mortality risk (i.e. the VSL) may also increase with
growing income level in the future, which conse-
quently favors Hybrid.
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5. Conclusion

We highlight three policy implications. First, coordi-
nating transmission planning with renewable energy
deployment is critical to maximize combined air
quality and climate benefits from energy by wire
strategies. In China for example, wind and solar
resources are abundant in northern and western
regions, while air pollution is severe in eastern
population centers. Using electricity transmission to
connect renewable production areas with highly
populated and polluted regions can better exploit
renewable resources in remote areas, integrate variable
with dispatchable resources [55], reduce carbon
emissions, and maximize air quality and health
benefits [53]. As many countries also need to expand
transmission to support a scale-up of renewable
energy [5, 17], we suggest that grid planners, acting in
the national interest, consider the air quality
implications of transmission capacity investment in
order to increase both potential health co-benefits and
carbon mitigation efforts.

Second, we highlight that work of this type—
which aims to quantify the national benefits of
policies that could have global consequences—
requires future improvements in calculating national
and global benefits in economic terms. The integrated
assessment method in this analysis provides a
rigorous evaluation of the health-related air quality
impacts and carbon emissions. However, monetizing
the impacts currently rely on VSL estimates, which
in emerging economies are particularly hard to
pin down, as well as concepts such as the SCC, which
co-mingles national and global benefits. More robust
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economic evaluations are needed for reliable cost
benefit analyses [54].

Third, while we focus on air quality and climate
impacts in this analysis, long-distance transmission
may pose other local environmental impacts especially
in the electricity exporting regions. For instance,
relocating coal power generaion to arid western
regions may exacerbate water scarcity and extensive
development of hydropower may have major impacts
on local ecosystem. We thus suggest that grid planners
consider the overall impact of long-distance electricity
transmission on the environment at regional, national
and global scales.
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