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CONTRIBUTORS TO CLIMATE CHANGE
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< CO, is the major contributor to climate change
<> However, other gases, aerosols and activities also contribute to climate change

<> Opportunities exist for fast action to reduce climate change by reducing forcing
from non-CO, agents
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NON-CO, CLIMATE FORCERS

<> Abundant GHGs: non-CO, greenhouse gases that that are abundant in the atmosphere

< Methane (CH,)
< Nitrous Oxide (N,0O)

<> Trace GHGs with high GWP: non-CO, greenhouse gases with high global warming
potentials (GWPs) but are less abundant in the atmosphere

Ozone-depleting substances (ODSs) — particularly CFCs and HCFCs
Hydrofluorocarbons (HFCs)

Perfluorocarbons (PFCs)

Sulfur Hexafluoride (SF)

Nitrogen Trifluoride (NF;)

R

<> Black Carbon: aerosol that absorbs solar radiation, affects properties of clouds, and
decreases surface albedo when deposited on snow/ice

<> Surface Albedo: changes in surface reflectivity can cool or warm the Earth

<> Cool Roofs and Pavements: increase surface albedo



CONTRIBUTIONS TO CLIMATE CHANGE
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<> Several metrics quantify and compare the warming “impact” of a climate forcer

1. Radiative Forcing — Physical measure of energy added (positive value) to the climate
system from the presence of a climate forcer in W/m?

2. Global Warming Potential (GWP) — Derived scalar used to describe the warming potential
of a gas relative to CO, over a specified period of time; Typically 20 or 100 year periods

3. Carbon Dioxide Equivalent (CO,eq) — The amount of CO, that would have the same GWP

as another climate forcer; Mass of forcer multiplied by GWP

Current Radiative Forcing (W/m?)
based on atmospheric concentrations

Carbon Dioxide Equivalent (20 yrs)
based on current annual emissions & GWP,,

Carbon Dioxide Equivalent (100 yrs)
based on current annual emissions &GWP
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SURVEY OF NON-CO, CLIMATE FORCERS
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BEST POLICY OPPORTUNITIES

<> Criteria for choosing best policies

* Potential impact on the climate,
including consideration of
emissions growth rates

e Cost

— Government
— Private sector
* Speed of implementation

— Maturity of technology
— Existing authority

e Co-benefits



GWP,,=78

GWP,,,= 25
M ETHAN E ATMOSPHERIC LIFETIME = 11200YEARS
MM’“‘” g n
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<> EPA regulates methane emissions from a
small fraction of landfills above certain size

SOURCES
<> EU-27 Commitments creates Mandatory

® Enteric Fermentation diversion of biodegradable waste away

B Manure L
s from landfills
B Natural Gas and Oil
'\C,\‘/’a't o <> UNFCCC Kyoto Protocol controlled gas
aste Water
Landfills <> Methane reductions from waste and coal

Other (Fuel, Biofuel, Biomass Burning) mine are approved methodologies
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PoLicy OPTIONS

<> EPA regulation methane emissions under the Clean Air Act

<> Financial incentives landfill and coal mine gas electricity generation

<> State facilitation of grid connection of landfill and coal mine gas

<> Sharing of best practice policies within the Global Methane Initiative

<> Federal model for local waste management policies

<> Support for campaigns to reduce meat consumption in government cafeterias

<> Agricultural methane emissions reductions research



METHANE — Best Pollcy Option
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<> EPA regulation methane emissions under the Clean Air Act

<> Advantages

* High impact — Based on EPA’s estimates of mitigation costs, emissions could be reduced by
177 Mt CO,eq (GWP,,,) in 2030 and would cost at most $20/tCO,eq

» Established technology — EPA reports that the technology for capturing methane from coal
mines, landfills reducing leakage from gas and oil systems has been demonstrated at
significant scale at costs below $20/tCO,eq

* Low cost to government — Low marginal cost to the government given existing monitoring
and enforcement protocols for air pollution control.

* Co-benefits — Methane emissions increase surface ozone levels which leads to premature
mortalities, degradation of materials and reduction in agricultural yields. 61 Mt CO,eq

(GWP,,,) reduction of methane per annum would avoid 30,000 premature mortalities in
2030.

<> Challenges

* Project developers may opt for minor modifications. Startup dates for new landfill and
coal mine projects could face delays if permission to supply power to grid is required
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<> IMPACTS: climate warming, ozone layer
depletion

<> CURRENT POLICIES:

<> EPA/DoT tailpipe emissions cap

<> Required EPA reporting of N,O
emissions from nitric/adipic acid plants

<> Alberta, Canada offset protocol
stimulating N,O reductions

<> EU Emissions Trading Scheme
introducing credits for N,O reduction
from nitric acid plants available from
2013. 90% emission reductions
expected by 2020

<> UNFCCC Kyoto Protocol controlled gas

11




PoLicy OPTIONS

<~ Establish N,O performance standards under the Clean Air Act
< Amendment of the Montreal Protocol to include N,O

< Expansion of light-duty vehicle N,O cap to all vehicle classes

<~ Establish a N, O task force under the Major Economies Forum
<>

Identification and development of methodologies for the measurement
of agricultural N,O emissions

<>

Creation of an offset protocol for N,O emissions from nitric acid
production

12



Option

N,O — Best Policy

e B | TeSUURe_

< N,O Performance Standard under the Clean Air Act
Emulate the EU "average best 10%" policy on N20 emissions from nitric acid

<> Advantages

High impact — Potential U.S. emissions reductions of 25 million tons CO,eq(GWP,,,) per year
by 2020

Low cost — Cost estimates range from less than $1 per ton CO,eq(GWP,,,) to S61 per ton
C0O,eq(GWP,y,)

Quick implementation — Only 35 nitric acid plants in the U.S. Easily targeted
* Technology exists — Abatement technologies already being used in many new plants

* Regulatory authority — Existing authority under the Clean Air Act and the endangerment
finding for the EPA to regulate N,O either as a GHG or ODS

Co-benefits — Many abatement technologies also reduce NOx emissions, a key constituent of
air pollution

<> Challenges

Costs to manufacturers and pushback from ENGOs regulating N,O as an ODS instead of a GHG.
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<> IMPACTS: climate warming particularly in
the Arctic and glacial regions, air quality,
human health

<> CURRENT POLICIES:

<> U.S. set strict PM2.5 emission standards
for on-road vehicles in 2010 and off-road
vehicles in 2013

<> EPA has a Diesel Retrofit Technology
Verification program which currently lists
EPA tested retrofit technologies

<> EPA has a BC report to Congress due to be
released in 2011

<> California has implemented several diesel
particulate filter retrofit programs

<> United Nations Environment Programme

(UNEP) will soon release an integrated
assessment report on black carbon

<> Global Alliance for Clean Cookstoves

14




BLACK CARBON

PoLicy OPTIONS
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> <

Continued support of retrofit projects with a focus on heavy duty vehicles
International cooperation to reduce black carbon emissions that reach “hot spots”
International cooperation to address black carbon emissions from brick kilns

Engage in international collaboration to share diesel and non-diesel fuel
technologies with developing countries

Host annual international meeting on black carbon
Improve vehicle efficiency standards to mitigate black carbon emissions

Expand funding for retrofit programs by providing loan guarantees for retrofits to
small fleet operators and farms

Add black carbon mitigation to the list of potential GEF projects

1:5



BLACK CARBON — Best Policy Options

- A e = S N
— - - — - - = —
- g, = ‘y‘.-’ P 2T p——

<> Policy support for installation of diesel particulate filters in heavy-duty vehicles

<> Advantages

* Existing authority — potential initial progress by expanding EPA’s Diesel Retrofit
Technology Verification program

» Established technology — diesel particulate filters can capture over 90 percent of
black carbon emissions from vehicles

» Significant impact — retrofitting 8,000 heavy duty vehicles would reduce emissions

by ~1 MtCO,eq (GWP,,,) and black carbon has a lifetime of only a few weeks so
effects would be almost immediate.

» Co-benefits — reducing black carbon emissions will improve air quality and reduce
lung related health consequences

<> Challenges

* Would cost about $77/tCO2eq (GWP,,,) or $10,000 per vehicle and would require
new funding for financial support



BLACK CARBON Best Pollcy Optlons

<> Focus international cooperation to reduce black carbon emissions that reach “hot spots”

<> Advantages

Existing authority — the Arctic Council and the Convention on Long-range Transboundary Air Pollution

Significant impact — snow and ice (Arctic and Himalaya) magnify warming caused by black carbon leading
to further warming from positive feedbacks

Co-benefits — benefits to air quality, respiratory illness reduction, and water resources

<> Challenges

Political and technical difficulty in reducing emissions from hot spot emissions sources including bunker
and HD vehicles

< International cooperation to address black carbon emissions from brick kilns
<> Advantages

Established technology — Modern brick kilns use 75 percent less fuel and emit less black carbon

Rapid sector growth — In developing countries, brick production growth rates are high and likely to
continue to rise.

Net negative cost to private sector — modern kilns significantly reduce energy costs

High impact — Under 10 percent of brick kilns globally use modern technology, global reduction potential
is 85 MtCO,eq (GWP,,,), and brick kilns are concentrated in black carbon “hot spots”

Co-benefits — reducing black carbon emissions will improve local air quality and reduce respiratory illness

<> Challenges

Working with poor rural or semi-rural communities in developing countries
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PoLicy OPTIONS

<> DOE expansion and modification of Cash for Appliances program

<> Establish financial support for ODS bank removal projects in developing
countries

1. Revenue from carbon markets associated with the destruction of banks in
developed countries

2. The Multilateral Fund (MLF)

3. Aseparate funding facility for ODS bank recovery and destruction partnered with
the MLF under the Montreal Protocol

4. Taxation of imports or sales of synthetic refrigerants with high GWP



ODS BANKS — Best Policy Option
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<> DOE Expansion and Modification of Cash for Appliance and Similar Programs
Require retailer participants to join EPA’s Responsible Appliance Disposal (RAD) program
<> Advantages
* High impact

* Moderate cost — estimated cost of ODS removal is $10-$35/tCO,eq(GWP,). A program that aimed to
reduce 10 percent of the emissions expected in 2015 would cost $398 million to $1.4 billion, depending
on the cost of mitigation per ton CO,eq.

* Quick implementation

* Established technology — destruction equipment that can destroy 99.99 percent of the
refrigerants it processes is already in use at over 100 sites in 26 countries

* Fast acting — many stimulus programs currently exist and provide an opportunity for quick
disposal of ODS banks

* Co-benefits — ODS bank destruction would have obvious co-benefits for the ozone layer. These ozone
benefits must be accounted for when considering the cost of managing ODS banks, as they will save

billions of dollars worldwide in health-care costs associated with skin cancer, eye cataracts, and other
ozone-related ailments.

<> Challenges

* Costs of incentivizing the purchase of new appliances is not included
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HFCs
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PoLicy OPTIONS

<> EPA withdrawal of SNAP approval of HFC-134a

<> EPA and NHTSA incorporation of low-GWP refrigerant credits in medium duty, heavy duty,
and off-highway vehicle classes

<> Engagement with large commercial cooling and retail food refrigeration industries to reduce
HFC leakage in existing and new equipment

<> Establish voluntary GWP standards for refrigerants under the EPA Greenchill partnership

<> Climate impact labeling

<> Mandatory certification for HFC sales and service

<> Mandatory HFC-23 destruction

<> Pass the North American Proposal under the Montreal Protocol

<> Introduction of the HFC components of the Kerry Lieberman Climate Bill as a separate bill

<> DOE support for research and development of HFC alternatives

22



HFCS — Best Policy Options
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<> EPA withdrawal of SNAP approval of HFC-134a

<> Advantages
* Moderate impact — high growth rate, targets all sectors, 0.2 GtCO,eq potential
* Low cost to private sector — ~S4/tCO,eq(GWP,,), for incorporating low-GWP alternatives
* Quick implementation
* Existing authority — SNAP program
* Established technology — low-GWP alternatives approved for multiple uses
* Political Feasibility — similar policies in CA and EU

<> Challenges

* SNAP approval pending for low-GWP alternatives for MVAC, large-scale uses
» Safety and flammability concerns for low-GWP alternatives

N

<> EPA and DOT incorporation of low-GWP refrigerant credits in medium duty, heavy duty,
and off-highway vehicle classes

<> Advantages
* Moderate impact — high growth rate, these three classes account for ~¥9% US GHG emissions
* Low cost to private sector — for incorporating low-GWP alternatives ~$4/tCO,eq(GWP,,,)
* Quick implementation —
* Regulatory authority — EPA and DOT can set GHG emissions standards
» Established technology — low-GWP alternative HFC-152a approved
<> Challenges
*  SNAP approval pending for low-GWP alternatives for MVAC
» Safety and flammability concerns for low-GWP alternatives



HFCS — Best Policy Options
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<> Engagement with large commercial cooling and retail food refrigeration industries to
reduce HFC leakage in existing and new equipment

<> Advantages

* Moderate impact — high growth rate, targets refrigeration and air conditioning sectors, 0.3 GtCO,eq
potential

* Net negative cost to private sector — less leakage = less chemical needed
* Quick implementation —

* Regulatory authority — EPA’s Greenchill partnership, DOE and energy efficiency
* Technology exists — secondary loop and distributed systems technology are readily available

24
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GLOBAL

<> IMPACTS: climate warming

<> CURRENT POLICIES:

<~ EPA SF, Emissions Reduction Partnership for
Electric Power Systems

<~ EPA SF, Emissions Reduction Partnership for
the Magnesium Industry

<> Norway, Switzerland, Iceland, and Japan

mandate leak detection, repair programs,
and SF, recycling programs

<> EU’s F-Gas Directive mandates replacement
of SF, with SO,, leakage control, end-of-life
recollection and recycling, and bans the use
of SF, as a filler gas

<> UNFCCC Kyoto Protocol controlled gas

<> 5 Clean Development Mechanism (CDM)
projects registered, 1 under review

25




PoLicy OPTIONS

<~ Agency administration of SF, recycling programs and required leak
detection and repair programs in the electric power system sector

<~ Partnership with industry to support efforts to reduce SF, emissions from
semiconductor and thin film manufacturing

<> International engagement to promote alternative cover gases in magnesium
production
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<> International Aluminum Institute (IAl)
B Aluminum :
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GLOBAL uU.S.
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POLICY OPTIONS:

<> International cooperation to identify financing mechanisms for aluminum
smelter retrofits

<> International cooperation to reduce PFC emissions from electronics and
semiconductor manufacturing

<> R&D on cost-effective technologies to reduce PFC emissions from
electronics and semiconductor manufacturing

<> Establish ambitious domestic and international aluminum recycling goals

<> Develop international standards for anode effects during aluminum
production

28



PFCS — Best Pollcy Optlons

<> International Cooperation: ID Financing for Al Smelter Retrofits
<> Advantages

* Moderate impact — industry-wide retrofits could reduce PFC emissions by 63
MtCO,eq/year

* Low-cost
» Well-established technology

» Co-benefits —increases plant efficiency = cost savings for companies and
reductions in CO, emissions

<> Challenges

* Many demands on international funding to mitigate climate change.
Employing an ESCO-like mechanism for retrofits could overcome this
challenge.



PFCS — Best Pollcy Optlons

<> International Cooperation to reduce PFC emissions from electronics and
semiconductor manufacturing

<> Advantages

* Moderate impact — industry-wide use of post-use destruction technology
could reduce PFC emissions by 0.1 GtCO,eq/year

* Well-established technology can reduce emissions over 95 percent

* Political feasibility — the semiconductor industry previously willing to
collaborate

<> Challenges

* No international governmental cooperation in this area, so difficult to
know with certainty the impact in terms of emission reductions
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<> Semiconductors
<> Electronics
<> Thin film manufacturing processes
* plasma etching
* chemical vapor deposition chamber cleaning
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PoLicy OPTIONS

<~ Collaboration on NF; emissions reductions in a Non-CO, Climate Task Force
under the MEF

<> EPA expansion of NF; emissions reporting requirement to all sectors

<~ Establish sectoral cap on NF; emissions

32



CoOL ROOFS AND PAVEMENTS
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HIGH ALBEDO SURFACES

Low reflection,
low emissivity;
traps energy in

Higher reflection,
higher emissivity;
yields cooling of
climate system

CO,eq(GWP,q,)
current annual emissions

All climate
forcers

Non-CO,
climate
forcers

B CO2 ® Methane

42'Gt CO,eq ]

N20O ® Black Carbon ® HFC/HCFC/CFC

9 Gt CO,eq

reduction for 0.25
increase in roof
albedo and 0.1

> increase in pavement
albedo of all urban
roofs and pavements
for 20 years;
one-time offset

PFCs “ NF3 ™ SF6

<> IMPACTS: climate cooling, energy
usage, human health

<> CURRENT POLICIES:

<> DOE released a draft roadmap for
policy and R&D work on cool roofs
and pavements in Nov. 2010

<> Several voluntary energy efficiency
and green building standards offer
credits for cool roofs

<> California, Florida, Hawaii, New
York City, Atlanta, Chicago and
Philadelphia are developing
customized policies for cool roofs

<> No current policies on high-albedo
pavements in the U.S. or abroad
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CoOL ROOFS AND PAVEMENTS
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PoLicy OPTIONS

<> Analysis of the potential scale of cost-effective cool roof deployment through federally
funded building construction and roof repairs

<> Promotion of high-albedo paving material use for local roads with light traffic

<>

Support for adoption of model building codes by state and local governments

<> Analysis of cool roof programs as a demand reduction strategy to avoid the need for new
power plants

¢

Addition of cool roofs to the criteria for ranking of state and municipality DOE grants

<>

Inclusion of cool pavements in the work plan for the Global Superior Energy Performance
Partnership

Establishment of DOE authority to regulate roofing materials
Establishment of enhanced financial incentives for cool roof investments

Diversification of research institutions funded to research cool roofs and pavements

R

Research on potential value of cool roof and cool pavement projects in future carbon markets



CoOL ROOFS & PAVEMENTS — Best Policy Options

<> Analyze cost & scale of cool roof deployment in federally funded building construction

<> Advantages

* Quick implementation — Already funding WAP (300K homes), BetterBuilding (S486M),
HUD (5M units)

» Technology exists — Well-established and third-party certified by CRRC
* Regulatory authority — Clearly exists since federally-funded projects

* Low cost — Only proceed when cost-effective (new construction, roof work underway,
low-sloped)

* Co-benefits — energy savings, CO, saved, peak demand, urban heat island effect, smog,
roof quality

<> Challenges

* Low-Moderate impact — If reach 50,000 homes 75 ktCO,eq and 500,000 homes to 0.75
MtCO,eq

* Not cost-effective to retrofit all buildings; unknown labor costs as part of larger project



CoOL ROOFS & PAVEMENTS — Best Policy Options

<> Promote high-albedo paving material use for local roads with low traffic

<> Advantages

* Low cost — high-albedo substitutes cost no more than conventional materials, can produce
savings by reducing need for maintenance and repaving

* Quick implementation
* Well-established technology — for both asphalt and cement concrete pavements

* Existing authority — DOE could write model codes or procurement policies for state
and local governments

* Co-benefits — Air quality benefits from reduced need for new asphalt applications

<> Challenges

* Low to moderate impact — Not easily scalable, as most authority rests with state and local
governments



CROSS-CUTTING POLICIES

<> Consideration of life cycle emissions

* “Cradle to cradle” emissions policy could reduce emissions at each point
in its life cycle

e This would allow for improved reporting and tracking, and likely create
an incentive for emission reductions at each point in a gas’ life
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CROSS-CUTTING POLICIES
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<> Non-CO2 Climate Forcer Task Force/Initiative under MEF/CEM
MEF/CEM Task Force or Initiative on High-GWP industrial gases under GSEP:

* Black Carbon:
— Establish goals and financing to reduce BC emissions from brick kilns
— Cooperation to reduce BC emissions that affect the Arctic and Himalayas

* N,O:
— Standards & technology sharing for abatement technologies from nitric acid plants

— Transnational research to monitor and reduce agricultural emissions

* High GWP Industrial Gases (PFCs, SF, and NF;):
Work with WSC/industry to establish:
— Emissions reporting protocols
— Best practice sharing for limiting emissions in end-use and production
— Emission reduction goals
— R&D on cost-effective technologies to reduce future emissions

* Best Practice sharing on reducing F-gas emissions from electricity transmission
* Identify financing for aluminum smelter retrofits in developing countries

* Promote use of alternative cover gases in magnesium production



SUMMARY OF BEST POLICY OPTIONS
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Best Policy Options High Impact | Low Cost bl o Lon Co-Benefits
Methane |EPA regulation of landfill and coal mine methane emissions / 4 / 7
N20 Establish N,O performance standards under the Clean Air
Act v v v v
Continued support of retrofit projects with a focus on heavy
duty vehicles of model year 1998-2009 v v v
International cooperation to address black carbon emissions
Black Carbon
from brick kilns v v v v
International cooperation to reduce black carbon emissions
that reach “hot spots” v v v
ODS Banks DOE expansion and modification of Cash for Appliances

program v v v
EPA withdrawal of SNAP approval of HFC-134a v v

EPA and NHTSA incorporation of low-GWP refrigerant
credits in medium duty, heavy duty, and off-highway vehicle

HFCs classes v/ 4
Engagement with large commercial cooling and retail food
refrigeration industries to reduce HFC leakage in existing
and new equipment v v
International cooperation to identify financing mechanisms
PECs for aluminum smelter retrofits v v v
International cooperation to reduce PFC emissions from
electronics and semiconductor manufacturing v

Analysis of the potential scale of cost-effective cool roof
deployment through federally funded building construction

Cool Roofs and
and roof repairs v v v

Pavements g : 3 z
Promotion of high-albedo paving material use for local

roads with low traffic v/ v v
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